Error analysis of finite element solutions to nonlinear partial differential equations

非线性偏微分方程有限元解的误差分析

基本信息

  • 批准号:
    10640123
  • 负责人:
  • 金额:
    $ 1.73万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 1999
  • 项目状态:
    已结题

项目摘要

Let Ω ⊂ RィイD1dィエD1 be a bounded domain in the d-dimensional Euclidean space RィイD1dィエD1. The following strongly nonlinear elliptic boundary value problem has been considered :∫ィイD2ΩィエD2(aィイD4→ィエD4(λ,x,u,∇u)・∇ν+f(λ,x,u,∇u)ν)=0, ∀ν ∈ ΗィイD31(/)0ィエD3(Ω),where aィイD4→ィエD4, f are sufficiently smooth functions. Let F(λ,u) be the nonlinear operator defined by the above equation. We have shown, using the Kantorovich theorem and the Implicit Function Theorem with error estimation, that if (λ,u) is an exact solution of the equation and the Frechet derivative DィイD2uィエD2F(λ,u) with respect to u is an isomorphism between certain function spaces then there exists a locally unique finite element solution (λ,uィイD2hィエD2) closed to (λ,u) and several error estimates are obtained. This result can be extended in a few ways. Even if solution branch has turning points we can obtain similar results. In such a case, the error of the finite element solution (λィイD2hィエD2,uィイD2hィエD2) is estimated as|λ-λィイD2hィエD2|+ ||u-uィイD2hィエD2||<_C||u-ΠィイD2hィエD2u||.Moreover, we can show that the error |λ-λィイD2hィエD2| is much smaller that the error ||u-uィイD2hィエD2||. If the equation has a convection term, we have to introduce so-called upwind finite element scheme to obtain better approximation. However, such kind of discritization yields a non-differentiable finite element operator. Even so, we can obtain similar error analysis if the discirtized operator has a "pseudo-derivative".
设Ω⊂RィイD1dィエd1是d维欧氏空间Rィイd1dィエd1中的有界域。研究了一类强非线性椭圆型边值问题:∫ィイD2ΩィエD2(aィイD4→ィエD4(λ,x,u,∇u)·∇ν+f(λ,x,u,∇u)ν)=0,∀ν∈ΗィイD31(/)0ィエD3(Ω),其中aィイD4→ィエD4,f是充分光滑函数.设F(λ,u)是由上述方程定义的非线性算子。利用Kantorovich定理和带误差估计的隐函数定理,证明了如果(λ,u)是方程的一个精确解,且关于u的Frechet导数DィイD2uィエD2F(λ,u)是某些函数空间之间的同构,则存在一个局部唯一的有限元解(λ,uィイd2hィエD2)接近于(λ,u),并得到了几个误差估计.这一结果可以通过几种方式进行推广。即使解分支存在转折点,我们也可以得到类似的结果。在这种情况下,有限元解(λィイd2hィエD2,uィイd2hィエD2)的误差估计为|λ-λィイd2hィエD2|+λ-λィイ,我们可以证明,误差|ィエd2hD2|远小于误差||u-uィイd2hD2||。如果方程有对流项,我们必须引入所谓的迎风有限元格式来获得更好的逼近。然而,这种刻画产生了一个不可微的有限元算子。即使如此,如果离散化的算子有“伪导数”,我们也可以得到类似的误差分析。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Tsuchiya: "Finite element analysis for parametrized nonlinear eguations around turning point"Journal of Compntational and Applied Mathematics. (印刷中).
T.Tsuchiya:“围绕转折点的参数化非线性电子的有限元分析”计算与应用数学杂志(正在出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T. Tsuchiya: "An application of the Kantorovich Theorem to nonlinear finite element analysis"Numerishche Mathematik. 84. 121-141 (1999)
T. Tsuchiya:“康托罗维奇定理在非线性有限元分析中的应用”Numerishche Mathematik。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T. Tsuchiya: "Finite element approximations of parametrized strongly nonlinear boundary value problems"(submitted).
T. Tsuchiya:“参数化强非线性边值问题的有限元近似”(已提交)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Tsuchiya: "Finite element analysis for parametrized nonlinear equations around furning points"Journal of comprtational and Applied Mathematics. (印刷中).
T.Tsuchiya:“围绕炉点的参数化非线性方程的有限元分析”计算与应用数学杂志(正在出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Tsuchiya: "Finite element approximations of parametrized strongly nonlinear boundary value problems"(投稿中).
T.Tsuchiya:“参数化强非线性边值问题的有限元近似”(当前已提交)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TSUCHIYA Takuya其他文献

TSUCHIYA Takuya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TSUCHIYA Takuya', 18)}}的其他基金

Study on finite element exterior calculus
有限元外微积分研究
  • 批准号:
    22540139
  • 财政年份:
    2010
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of finite element analysis on differential manifolds
微分流形有限元分析研究
  • 批准号:
    19540135
  • 财政年份:
    2007
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of finite element methods for nonlinear problems and its error analysis
非线性问题的有限元方法研究及其误差分析
  • 批准号:
    17540120
  • 财政年份:
    2005
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Theory of Error Analysis of Finite Element Methods
有限元方法误差分析的数学理论
  • 批准号:
    14540122
  • 财政年份:
    2002
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Error Analysis of Ritz Finite Element Methods
Ritz有限元法的误差分析
  • 批准号:
    12640128
  • 财政年份:
    2000
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Solvability of elliptic partial differential equations with rough coefficients; the boundary value problems
具有粗糙系数的椭圆偏微分方程的可解性;
  • 批准号:
    EP/J017450/1
  • 财政年份:
    2012
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Research Grant
Research on initial and boundary value problems, and space-time estimates for nonlinear partial differential equations
非线性偏微分方程的初值和边值问题以及时空估计研究
  • 批准号:
    23684004
  • 财政年份:
    2011
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Inverse Boundary Value Problems in Partial Differential Equations
偏微分方程中的反边值问题
  • 批准号:
    1114944
  • 财政年份:
    2010
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Standard Grant
Inverse Boundary Value Problems in Partial Differential Equations
偏微分方程中的反边值问题
  • 批准号:
    0807502
  • 财政年份:
    2008
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Standard Grant
Fast and accurate numerical algorithms for boundary value problems of elliptic partial differential equations on open surfaces in three dimensions
三维开曲面椭圆偏微分方程边值问题的快速准确数值算法
  • 批准号:
    0715121
  • 财政年份:
    2007
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Standard Grant
Boundary value problems for partial differential equations and systems
偏微分方程和系统的边值问题
  • 批准号:
    7262-1990
  • 财政年份:
    1992
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Discovery Grants Program - Individual
Boundary value problems for partial differential equations and systems
偏微分方程和系统的边值问题
  • 批准号:
    7262-1990
  • 财政年份:
    1991
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Sciences: Boundary Value Problems for Partial Differential Equations
数学科学:偏微分方程的边值问题
  • 批准号:
    8617588
  • 财政年份:
    1987
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Boundary Value Problems for Partial Differential Equations
数学科学:偏微分方程的边值问题
  • 批准号:
    8420850
  • 财政年份:
    1985
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Continuing Grant
Boundary Value Problems For Partial Differential Equations
偏微分方程的边值问题
  • 批准号:
    7709237
  • 财政年份:
    1977
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了