Error Analysis of Ritz Finite Element Methods

Ritz有限元法的误差分析

基本信息

  • 批准号:
    12640128
  • 负责人:
  • 金额:
    $ 1.79万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2001
  • 项目状态:
    已结题

项目摘要

In this research project, we have tried to develop an error analysis of Ritz finite element methods, and have obtained the following results.We have considered finite element approximations of conformal mappings from the unit disk to Jordan domains defined in two-dimensional Euclidean space. The set of admissible mappings is defined in piecewise linear finite element space. We then define the finite element (FE) conformal mappings as the minimizer of the Dirichlet integral in the set of admissible mappings. Under certain mild assumptions we have shown FE conformal mappings converge to a exact conformal mapping as triangulation of the unit disk is getting refined. We also considered Jordan domains with angles. Introducing "the smoothing method", developed in optimization theory, we may also compute FE conformal mappings to those domains. Many interesting examples are given.Surfaces in three-dimensional Euclidean space on which the mean curvature is constant at every point are called H-surfaces. We consider finite element approximation of H-surfaces. Finite element H-surfaces are defined as stationary point of an energy functional in a certain set of admissible mappings in the piecewise linear finite element space. It is proven that finite element H-surfaces converge to an exact H-surface. Many numerical examples are given.
在这个研究项目中,我们尝试发展了Ritz有限元方法的误差分析,并得到了以下结果。我们考虑了定义在二维欧氏空间中的共形映射到Jordan区域的有限元逼近。在分段线性有限元空间中定义了一组允许映象。然后,我们定义有限元(FE)共形映射为Dirichlet积分在可容许映射集中的极小值。在某些温和的假设下,我们证明了随着单位圆盘的三角剖分的细化,有限元共形映射收敛到精确的共形映射。我们还考虑了带角度的Jordan域。引入最优化理论中发展起来的“光滑化方法”,我们还可以计算到这些区域的有限元共形映射。文中给出了许多有趣的例子。三维欧氏空间中平均曲率在每个点上为常数的曲面称为H-曲面。我们考虑H-曲面的有限元逼近。在分段线性有限元空间中,有限元H-曲面被定义为能量泛函在一组允许映象中的驻点。证明了有限元H-曲面收敛到精确H-曲面。文中给出了许多数值算例。

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Tsuchiya, Q.Fang: "An explicit inversion formula for tridiagonal matrices"Computing [suppl]. 15. 227-238 (2001)
T.Tsuchiya、Q.Fang:“三对角矩阵的显式反演公式”计算 [suppl]。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Tsuchiya: "Finite element analysis for parametrized nonlinear equations around turning points"Journal of Computational and Applied Mathematics. 132. 255-276 (2001)
T.Tsuchiya:“围绕转折点的参数化非线性方程的有限元分析”计算与应用数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Tsuchiya: "Finite element analysis for parametrized nonlinear equations around turning points"J.Comp.Appl.Math.. (in press).
T.Tsuchiya:“围绕转折点的参数化非线性方程的有限元分析”J.Comp.Appl.Math..(出版中)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takuya Tsuchiya: "Finite element analysis for parametrized nonlinear equations around turning points"Journal of Computational and Applied Mathematics. 132. 255-276 (2001)
Takuy​​a Tsuchiya:“围绕转折点的参数化非线性方程的有限元分析”计算与应用数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Matsuzawa, T.Suzuki, T.Tsuchiya: "Finite element approximation of H-surfaces"Mathematics of Computation. (印刷中).
Y.Matsuzawa、T.Suzuki、T.Tsuchiya:“H 曲面的有限元近似”计算数学(正在出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TSUCHIYA Takuya其他文献

TSUCHIYA Takuya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TSUCHIYA Takuya', 18)}}的其他基金

Study on finite element exterior calculus
有限元外微积分研究
  • 批准号:
    22540139
  • 财政年份:
    2010
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of finite element analysis on differential manifolds
微分流形有限元分析研究
  • 批准号:
    19540135
  • 财政年份:
    2007
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of finite element methods for nonlinear problems and its error analysis
非线性问题的有限元方法研究及其误差分析
  • 批准号:
    17540120
  • 财政年份:
    2005
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Theory of Error Analysis of Finite Element Methods
有限元方法误差分析的数学理论
  • 批准号:
    14540122
  • 财政年份:
    2002
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Error analysis of finite element solutions to nonlinear partial differential equations
非线性偏微分方程有限元解的误差分析
  • 批准号:
    10640123
  • 财政年份:
    1998
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

FMiTF: Track-2 : Rigorous and Scalable Formal Floating-Point Error Analysis from LLVM
FMiTF:Track-2:来自 LLVM 的严格且可扩展的形式浮​​点误差分析
  • 批准号:
    2319507
  • 财政年份:
    2023
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Standard Grant
Developing robust error analysis for radio polarization surveys
为无线电偏振测量开发稳健的误差分析
  • 批准号:
    561961-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.79万
  • 项目类别:
    University Undergraduate Student Research Awards
Finite element error analysis on anisotropic meshes
各向异性网格有限元误差分析
  • 批准号:
    21K03372
  • 财政年份:
    2021
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An attempt at a comprehensive error analysis using learner corpus and natural language processing techniques
尝试使用学习者语料库和自然语言处理技术进行全面的错误分析
  • 批准号:
    20K21977
  • 财政年份:
    2020
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Mixed forward-backward error analysis for structured linear systems
结构化线性系统的混合前向-后向误差分析
  • 批准号:
    512004-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.79万
  • 项目类别:
    University Undergraduate Student Research Awards
Duality and error analysis on conic programming through facial reduction algorithms
通过面部缩减算法进行二次曲线规划的对偶性和误差分析
  • 批准号:
    17K00031
  • 财政年份:
    2017
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: A Posteriori Error Analysis for Complex Models with Applications to Efficient Numerical Solution and Uncertainty Quantification
协作研究:复杂模型的后验误差分析及其在高效数值求解和不确定性量化中的应用
  • 批准号:
    1720473
  • 财政年份:
    2017
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Standard Grant
Collaborative Research: A Posteriori Error Analysis for Complex Models with Applications to Efficient Numerical Solution and Uncertainty Quantification
协作研究:复杂模型的后验误差分析及其在高效数值求解和不确定性量化中的应用
  • 批准号:
    1720402
  • 财政年份:
    2017
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Standard Grant
A Semantic Study on English Prepositions and a Homology Study on English and Japanese based on Error Analysis of Data Obtained through Cooporation between High School and University
基于高中校合作数据误差分析的英语介词语义研究及英日同源研究
  • 批准号:
    16K02761
  • 财政年份:
    2016
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Preasymptotic error analysis for function recovery problems in high dimensions
高维功能恢复问题的渐进误差分析
  • 批准号:
    299251995
  • 财政年份:
    2016
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了