A Study of Unified Super String Theory Based on Integrable Systems
基于可积系统的统一超弦理论研究
基本信息
- 批准号:10640278
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We can summarize the results of this research project in three main parts.1. Berezin quantization and string correlation functionsWe have attempted, in the research project from 1994 to 1996 (project number 06835023), to generalize the Moyal quantization method to supersymmetric fields from the view to analyze super string theory as an integrable system. The Moyal quantization method, however, can deal with only flat phase space. On the other hand the Berezin quantization is a manifestly noncommutative geometry, so that a quantization of nonflat space is possible to unify many super string theories. In this project we clarified the difference between these two quantization methods and showed that the string model itself can be represented naturally by functional integration of Berezin quantization.2. String model realization of discrete geometryDiscrete geometry is a new mathematics which is found by a generalization of the deep correlation between soliton equations and differential ge … More ometry to the discrete integrable systems. In this project we attempted to describe the super string correlation functions in terms of the discrete geometry. We found that the coordinates of the discrete geometry correspond to the quantized momenta of strings.3. New method to characterize discrete integrable systemsFrom our point of view that the super string theory is described by integrable systems, it is important to characterize the integrable systems themselves within the nonlinear systems in order to understand the super string theory. We have investigated in particular the discrete Lotka-Volterra equation to make clear under which mechanism a nonintegrable system turns to an integrable one when a suitable parameter is changed continuously. As a result we found that there exists an algebraic equation of the 2nd order which characterizes the system. The system is integrable only if the discriminant of the quadratic equation turns to a perfect square of a polynomial of the variables. Less
我们可以将本研究项目的成果总结为三个主要部分。Berezin量子化和弦相关函数在1994年至1996年的研究项目(项目号06835023)中,我们尝试将MoYAL量子化方法推广到超对称场,以将超弦理论分析为一个可积系统。然而,MoYal量子化方法只能处理平坦的相空间。另一方面,Berezin量子化是一种明显的非对易几何,因此非平坦空间的量子化可以统一许多超弦理论。在这个项目中,我们澄清了这两种量化方法之间的区别,并证明了弦模型本身可以通过Berezin量子化的函数积分来自然地表示。离散几何的弦模型实现离散几何是通过推广孤子方程和微分Ge…之间的深层联系而建立的一门新的数学离散可积系统的更多几何性质。在这个项目中,我们尝试用离散几何来描述超弦相关函数。我们发现离散几何的坐标对应于弦的量子化动量。刻画离散可积系统的新方法从超弦理论是由可积系统来描述的观点来看,为了理解超弦理论,重要的是刻画非线性系统中的可积系统本身。我们特别研究了离散的Lotka-Volterra方程,以明确当适当的参数连续变化时,不可积系统变成可积系统的机制。结果发现,存在一个描述该系统的二阶代数方程。只有当二次方程的判别式变为变量的多项式的完美平方时,系统才是可积的。较少
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Saito: "Symmetrization of the Berezin Star Product and Path-Integral Quantization"Prog.Theor.Phys.. 104,5. 893-901 (2000)
S.Saito:“Berezin 星积的对称化和路径积分量化”Prog.Theor.Phys.. 104,5。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S. Saito: "Discrte Conjugate Net of Strings"Contemporary Mathematics. (To be published).
S. Saito:“离散共轭弦网”当代数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Yoshida: "Analytical study of the Julia set of a Coupled Logistic Map"Journal of Physical Society of Japan. 68. 1513 (1999)
K.Yoshida:“耦合 Logistic 图 Julia 集的分析研究”日本物理学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Saito: "An Extension of the Hirota Bitinear Difference Equation"Theor. Math. Phys. Engl Tr. 118(3). 369-377 (1999)
S.Saito:“广田双线性差分方程的扩展”理论。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S. Saito: "Symmetrization of the Berezin Star Product and Path-Integral Quantization"Prog. Theor. Phys.. 104. 893-901 (2000)
S. Saito:“Berezin 明星产品的对称化和路径积分量化”Prog。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SAITO Satoru其他文献
意思決定に関わる2つの神経回路と向社会性
涉及决策和亲社会性的两个神经回路
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
NISHIYAMA Satoru;SAITO Satoru;坂上雅道 - 通讯作者:
坂上雅道
TRANSFERABLE INHIBITION OF DIRECT SUPPRESSION: EVIDENCE FROM A DOT-PROBE TASK
直接抑制的可转移抑制:来自点探测任务的证据
- DOI:
10.2117/psysoc.2020-a112 - 发表时间:
2021 - 期刊:
- 影响因子:0.5
- 作者:
NISHIYAMA Satoru;SAITO Satoru - 通讯作者:
SAITO Satoru
SAITO Satoru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SAITO Satoru', 18)}}的其他基金
Serial order in phonological working memory and long-term knowledge for temporal structure
语音工作记忆的序列顺序和时间结构的长期知识
- 批准号:
16K04424 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An interaction between semantic memory and prosody contributes to phonological working memory functioning
语义记忆和韵律之间的相互作用有助于语音工作记忆功能
- 批准号:
22530794 - 财政年份:2010
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The study of development of the new therapeutic target for the hepatitis C virus through the influence of the lipid metabolism
通过脂质代谢的影响开发丙型肝炎病毒新治疗靶点的研究
- 批准号:
22590743 - 财政年份:2010
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The role of verbal working memory in action control
言语工作记忆在动作控制中的作用
- 批准号:
19530655 - 财政年份:2007
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exploring timing control mechanisms in speech production and working memory
探索语音产生和工作记忆中的时序控制机制
- 批准号:
16530469 - 财政年份:2004
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Complex dynamical analysis of Soliton Systems
孤子系统的复杂动力学分析
- 批准号:
06835023 - 财政年份:1994
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SUPERSTRING FIELD THEORY AND INTEGRABLE SYSTEMS
超弦场论和可积系统
- 批准号:
02640234 - 财政年份:1990
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
PRIMES: Matroids, Polyhedral Geometry, and Integrable Systems
PRIMES:拟阵、多面体几何和可积系统
- 批准号:
2332342 - 财政年份:2024
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Well-posedness and Long-time Behavior of Dispersive Integrable Systems
色散可积系统的适定性和长期行为
- 批准号:
2348018 - 财政年份:2024
- 资助金额:
$ 1.02万 - 项目类别:
Continuing Grant
Algebraic Geometry of Hitchin Integrable Systems and Beyond
希钦可积系统及其他代数几何
- 批准号:
2301474 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Continuing Grant
Differential geometry and integrable systems: exploiting new links
微分几何和可积系统:利用新的联系
- 批准号:
23H00083 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Conference: Red Raider Mini-Symposium on Differential Geometry, Integrable Systems, and Applications
会议:Red Raider 微分几何、可积系统及应用小型研讨会
- 批准号:
2301994 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Conference: Finite Dimensional Integrable Systems 2023
会议:有限维可积系统 2023
- 批准号:
2308659 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Quantum groups, integrable systems and dualities
量子群、可积系统和对偶性
- 批准号:
2302661 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Algebraic Geometry and Integrable Systems -- Moduli theory and Equations of Painleve type
代数几何与可积系统——模理论与Painleve型方程
- 批准号:
22H00094 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Elliptic discrete integrable systems and bi-elliptic addition formulae
椭圆离散可积系统和双椭圆加法公式
- 批准号:
EP/W007290/1 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Research Grant
Fluctuations and correlations at large scales from emergent hydrodynamics: integrable systems and beyond
新兴流体动力学中的大规模波动和相关性:可积系统及其他
- 批准号:
EP/W010194/1 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Research Grant














{{item.name}}会员




