Research of Systems of Partial Differential Equations from the view point of Contact Geometry
接触几何角度的偏微分方程组研究
基本信息
- 批准号:11304002
- 负责人:
- 金额:$ 18.74万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this project is to study systems of partial differential equations as geometric objects, i.e., as submanifolds of Jet spaces, from the view points of differential geometry and singularities theory, the central theme of which is the contact equivalence problems of systems of differential equations.For the last year of the project, we did our research to summarize the following our original 6 projects :(1) Contact equivalence problem of systems of partial differential equations of second order for one unknown function. Especially the research of G2type partial differential equations of second order d'apres E. Cartan.(2) Formation of shock wave solutions and singularities of solutions of Monge-Ampere equations.(3) The research of graded Lie algebras induced from symbols of partial differential equations and the contact equivalence of systems of higher order partial differential equations of finite type.(4) Application of the equivalence problem for linear partial differential equations of finite type to projective submanifolds theory and Gauss-Schwarz theory.(5) Characterization of the notion of genre in exterior differential systems in terms of Web geometry.(6) The research of riemannian monifolds whose geodesic flows are completely integrable.The head investigator summarized the content of (1) in "G2-geometry of overdetermined systems of second order". Izumiya summarized the content of (2) in the journal "Sugaku Exposition". The contents of (3) was summarized by the head investigator and Yatsui in "Geometry of higher order differential equations of finite type associated with Symmetric spaces". As for the content of (4), Sato and Ozawa contributed to construct "Schwarzian derivative" in case of contact diffeomorphisms. The content of (6) was summarized by Kiyohara in "On Kahler-Liouville manifolds".
本项目的目的是研究作为几何对象的偏微分方程系统,即,作为Jet空间的子流形,从微分几何和奇点理论的角度出发,以微分方程组的切触等价问题为中心,在项目的最后一年,我们对以下六个项目进行了研究:(1)二阶偏微分方程组对一个未知函数的切触等价问题.特别是二阶G2型偏微分方程的研究。嘉当(2)冲击波解的形成和Monge-Ampere方程解的奇性。(3)由偏微分方程符号导出的分次李代数的研究及高阶有限型偏微分方程组的接触等价性。(4)有限型线性偏微分方程的等价问题在射影子流形理论和高斯-施瓦茨理论中的应用。(5)从网络几何的角度描述外微分系统中的类型概念。(6)关于测地线流完全可积的黎曼流形的研究,主要研究者总结了“二阶超定系统的G2-几何”中(1)的内容。Izumiya在《Sugaku Exposition》杂志上总结了(2)的内容。(3)的内容由首席研究员和Yatsui在“与对称空间相关的有限型高阶微分方程的几何学”中总结。关于(4)的内容,Sato和Ozawa在切触同态的情况下构造了“Schwarzian导数”。Kiyohara在“On Kahler-Liouville manifold”中总结了(6)的内容。
项目成果
期刊论文数量(41)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K. YAMAGUCHI: "G_2-geometry of overdetermined systems of second order"Trends in Mathematics (Analysis and Geometry in Several Complex Variable). 289-314 (1999)
K. YAMAGUCHI:“G_2-二阶超定系统的几何”数学趋势(多个复变量中的分析和几何)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Kiyohara: "On Kahler-Liouville manifolds"Contemp. Math.. 308. 211-222 (2002)
K.Kiyohara:“论卡勒-刘维尔流形”Contemp。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Sasaki: "A geometric study of the hypergeometric function with imaginary exponents"Experimental Mathematics. 10. 321-330 (2002)
T. Sasaki:“具有虚数指数的超几何函数的几何研究”实验数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Sato: "Contact Transformations and Their Schwarzian derivatives"Advanced Studies in Pure Mathematics. 37. 337-366 (2002)
H.Sato:“接触变换及其施瓦茨导数”纯数学高级研究。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Sasaki: "Projective surfaces defined by Appell's hypergeometru system E_4 and E_2"Kyushu J. Math. 55. 329-350 (2001)
T. Sasaki:“Appell 超几何系统 E_4 和 E_2 定义的投影曲面”Kyushu J. Math。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YAMAGUCHI Keizo其他文献
YAMAGUCHI Keizo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YAMAGUCHI Keizo', 18)}}的其他基金
Research on geometries of Differential Systems and Parabolic geometries
微分系统几何和抛物线几何研究
- 批准号:
23540065 - 财政年份:2011
- 资助金额:
$ 18.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the differential sysytems and geometric structures associated with simple graded Lie algebras
与简单分级李代数相关的微分系统和几何结构研究
- 批准号:
19340012 - 财政年份:2007
- 资助金额:
$ 18.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Contact Geometry of Second Order
二阶接触几何
- 批准号:
08454012 - 财政年份:1996
- 资助金额:
$ 18.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Approximation of transport maps from local and non-local Monge-Ampere equations
根据局部和非局部 Monge-Ampere 方程近似输运图
- 批准号:
2308856 - 财政年份:2023
- 资助金额:
$ 18.74万 - 项目类别:
Standard Grant
Canonical Kahler metrics and complex Monge-Ampere equations
规范卡勒度量和复杂的 Monge-Ampere 方程
- 批准号:
2303508 - 财政年份:2023
- 资助金额:
$ 18.74万 - 项目类别:
Standard Grant
Monge-Ampere equations and applications
Monge-Ampere 方程及其应用
- 批准号:
DP200101084 - 财政年份:2020
- 资助金额:
$ 18.74万 - 项目类别:
Discovery Projects
Complex Monge-Ampere Equations and the Calabi Flow
复杂的 Monge-Ampere 方程和卡拉比流
- 批准号:
1914719 - 财政年份:2019
- 资助金额:
$ 18.74万 - 项目类别:
Continuing Grant
Regularity Estimates for the Linearized Monge-Ampere and Degenerate Monge-Ampere Equations and Applications in Nonlinear Partial Differential Equations
线性蒙日安培方程和简并蒙日安培方程的正则估计及其在非线性偏微分方程中的应用
- 批准号:
1764248 - 财政年份:2018
- 资助金额:
$ 18.74万 - 项目类别:
Standard Grant
Canonical metrics on Kahler manifolds and Monge-Ampere equations
卡勒流形和 Monge-Ampere 方程的规范度量
- 批准号:
DE120101167 - 财政年份:2012
- 资助金额:
$ 18.74万 - 项目类别:
Discovery Early Career Researcher Award
Monge-Ampere equations and microlocal analysis on Kahler manifolds
Monge-Ampere 方程和 Kahler 流形上的微局域分析
- 批准号:
1206284 - 财政年份:2012
- 资助金额:
$ 18.74万 - 项目类别:
Standard Grant
Elliptic and parabolic complex Monge-Ampere equations on compact manifolds
紧流形上的椭圆和抛物线复数 Monge-Ampere 方程
- 批准号:
1332196 - 财政年份:2012
- 资助金额:
$ 18.74万 - 项目类别:
Standard Grant
Elliptic and parabolic complex Monge-Ampere equations on compact manifolds
紧流形上的椭圆和抛物线复数 Monge-Ampere 方程
- 批准号:
1105373 - 财政年份:2011
- 资助金额:
$ 18.74万 - 项目类别:
Standard Grant
Regularity of degenerate elliptic equations and systems, and applications to evolutionary equations and monge-ampere equations
简并椭圆方程和系统的正则性及其在演化方程和蒙日-安培方程中的应用
- 批准号:
341250-2007 - 财政年份:2011
- 资助金额:
$ 18.74万 - 项目类别:
Discovery Grants Program - Individual