Study of homotopy types and topological types of homeomorphism groups and their subgroups of 2 and 3-manifolds
2、3流形同胚群及其子群的同伦类型和拓扑类型研究
基本信息
- 批准号:11640074
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The homotopy ad topological types of groups of CAT-homeomorphism of compact 2-manifolds were studied by various authors for CAT=DIFF, PL and TOP.In this research we classified those of the homeomorphism groups of the noncompact 2-manifolds and the embedding spaces into 2-manifolds in TOP.Suppose M is a 2-manifold without boundary and X is a compact subpolyhedron of M.Let H (M) and ε(X,M) denote the homeomorphism group of M and the space of embeddings of X into M.The subscript "0"denotes the connected component of the identity or the inclusion.1. (Bundle) We showed that the restriction map π : H (M) _0 →ε (X,M)_0 is a principal bundle, and obtained a sufficient condition for the fiber to be connected.2. (Homotopy Type) In the case where M is noncompact and connected, we classified the homotopy type of H (M)_0 and showed that they are contractible except for a few cases. We also classified the homotopy types of ε(X,M) _0 in the case where X is connected.3.(Topological Type) We showed that H(M)_0 is a l_2-manifold in the case where M is noncompact and connected, and thatε(X,M) is also a l_2-manifold. Therefore, the topological types of these spaces can be classified with based upon their homotopy types.4. (PL Lipschitz Quasiconformal case) We obtained the corresponding results for the subgroups of PL Lipschitz Quasiconformal homeomorphisms and embeddings. For example, (1) when M is a noncompact connected PL 2-manifold, the subgroup of PL-homeomorphisms H^<PL>(M)_0 is a σ^∞-manifold, and (2) when M is a Ricmann surface, the subgroup of quasiconformal homeomorphisms H^<QC>(M)_0 is a Σ-manifold. In these cases, the inclusions H^<PL>(M)_0⊂H(M)_0 and H^<QC>(M)_0⊂H(M)_0 are fine homotopy equivalences.
紧2-流形的CAT同胚群的同伦和拓扑类型由不同的作者针对CAT=DIFF、PL和TOP进行了研究。在这项研究中,我们将非紧2-流形的同胚群和TOP中的2-流形的嵌入空间分类。假设M是一个无边界的2-流形,X是一个紧次多面体M·莱特·H (M)和ε(X,M)表示M的同胚群和X到M的嵌入空间。下标“0”表示恒等或包含的连通分量。 1. (束)证明限制映射π:H(M)_0→ε(X,M)_0是主束,并得到了光纤连通的充分条件。 2. (同伦型) 在M非紧且连通的情况下,我们对H(M)_0的同伦型进行了分类,并表明除了少数情况外它们都是可收缩的。我们还对X连通情况下ε(X,M)_0的同伦类型进行了分类。3.(拓扑类型)证明了在M非紧连通情况下H(M)_0是l_2流形,并且ε(X,M)也是l_2流形。因此,这些空间的拓扑类型可以根据它们的同伦类型进行分类。 4. (PL Lipschitz 拟共形案例)我们获得了 PL Lipschitz 拟共形同态和嵌入子群的相应结果。例如,(1) 当 M 是非紧连通 PL 2-流形时,PL-同态子群 H^<PL>(M)_0 是 σ^∞-流形,并且 (2) 当 M 是 Ricmann 曲面时,拟共形同态子群 H^<QC>(M)_0 是 Σ-流形。在这些情况下,包含项 H^<PL>(M)_0⊂H(M)_0 和 H^<QC>(M)_0⊂H(M)_0 是精细同伦等价。
项目成果
期刊论文数量(45)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Sakai and S.Uehara: "Spaces of upper semi-continuous multi-valued functions on complete metric spaces"Fund. Math.. 160. 199-218 (1999)
K.Sakai 和 S.Uehara:“完全度量空间上的上半连续多值函数的空间”基金。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tatsuhiko Yagasaki: "Homotopy types of homeomorphism groups of noncompact 2-manifolds"Topology Appl.. 108・2. 123-136 (2000)
矢崎达彦:“非紧2-流形的同胚群的同伦类型”拓扑应用108・2(2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Fumio Maitani: "Ahlfors-Rauch Type Variational Formulas on Complex Manifolds"Memo.Fac.Engi.Des.Kyoto Inst.Tech.. 49. 17-38 (2001)
Fumio Maitani:“复流形上的 Ahlfors-Rauch 型变分公式”Memo.Fac.Engi.Des.Kyoto Inst.Tech.. 49. 17-38 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tatsuhiko Yagasaki: "A short survey on Coarse Topology, RIMS Kokyuroku 1126"Research in General and Geometric Topology. 66-78 (2000)
Tatsuhiko Yagasaki:“粗略拓扑的简短调查,RIMS Kokyuroku 1126”一般和几何拓扑的研究。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Asada: "On centerfree quotients of surfaces group, to appear in Communications in Algebra."
M.Asada:“关于曲面群的无心商,将出现在《代数通讯》中。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YAGASAKI Tatsuhiko其他文献
YAGASAKI Tatsuhiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YAGASAKI Tatsuhiko', 18)}}的其他基金
Study of groups of measure-preserving homeomorphisms and volume-preserving diffeomorphisms of noncompact manifolds
非紧流形的保测同胚群和保体积微分同胚群的研究
- 批准号:
22540081 - 财政年份:2010
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of various groups of homeomorphisms of noncompact manifolds
非紧流形各群同胚的研究
- 批准号:
19540078 - 财政年份:2007
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Rigidity in Mapping class groups and homeomorphism groups
职业:映射类群和同胚群中的刚性
- 批准号:
2339110 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Continuing Grant
Diffeomorphism and homeomorphism groups of 4-manifolds and gauge theory for families
4流形的微分同胚和同胚群以及族规范理论
- 批准号:
19K23412 - 财政年份:2019
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Homeomorphism Groups of One-manifolds: Rigidity and Regularity
一流形的同胚群:刚性和正则性
- 批准号:
1711488 - 财政年份:2017
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
The homeomorphism Problem of families of functions of several variables and the data compression problem of multidimensional numerical tables
多变量函数族的同态问题与多维数值表的数据压缩问题
- 批准号:
19540148 - 财政年份:2007
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The autornorphisrn group of smcoth G-manifokls andals applications
smcoth G-manifokls 和应用程序的 autornorphisrn 组
- 批准号:
18540077 - 财政年份:2006
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of automorphisms preserving geometric structure of manifolds
保持流形几何结构的自同构研究
- 批准号:
16540058 - 财政年份:2004
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Homeomorphism Group
同胚群研究
- 批准号:
14540093 - 财政年份:2002
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topological invariants for periodic points of torus maps
环面图周期点的拓扑不变量
- 批准号:
13640079 - 财政年份:2001
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Open Riemann surfaces and quasiconformal mappings
开放黎曼曲面和拟共形映射
- 批准号:
12640171 - 财政年份:2000
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topological study on the structure of the group of homeomorphisms
同胚群结构的拓扑研究
- 批准号:
12640094 - 财政年份:2000
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)