Enumeration of Graph Coverings and Their Generalization
图覆盖的枚举及其泛化
基本信息
- 批准号:11640145
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We consider four objects in enumeration of graph coverings and their generalization : enumeration of regular coverings ; enumeration of g-cyclic A-covers ; lifts of automorphisms of symmetric digraphs; zeta functions of regular coverings.The general problem of counting the ismorphism classes of regular n-fold coverings of a graph G with respect to a group Γ of automorphisms of G is still unsolved except in the case that n is prime. The enumeration of Γ-isomorphism classes of regular p^n-fold coverings of G is a natural problem. A regular p^2-fold covering of G is either a Z_p×Z_p-covering or a Z_<p2>-covering of G. We enumerate the Γ-isomorphism classes of Z_p×Z_p-coverings of G.Furthermore, we show that it is possible to count the Γ-isomorphism classes of Z_p^n-coverings of G for any prime p(>2) and any 3≦n≦p.Next, for a connected symmetric digraph D, a finite group A and g∈A, we consider a g-cyclic A-cover of D as a generalization of a regular covering of a graph. We enumerate the Γ-isomorphism classes of g-cyclic Z_p×Z_p-covers and g-cyclic Z_p^3-covers of D. In the case that A is an abelian group, we present a characterization for two g-cyclic A-covers of D to be ismorphic with respect to a group Γ of automorphisms of D. Thus, we enumerate the I-isomorphism classes of g-cyclic Z_2^n-covers and g-cyclic Z_<2n>-covers of D.For a group Γ of automorphisms of a symmetric digraph D, we present a necessary and sufficient condition for Γ to have a lift with respect to a cyclic A-cover of D, and characterize the lift of Γ to be a split extension of A by Γ.As an application of a decomposition formula for the characteristic polynomial of a regular covering of a graph G, we obtain a factorization of the zeta function of a regular covering of G. Furthermore, we factorize the zeta function of a g-cyclic A-cover of a symmetric digraph.
我们考虑图覆盖的枚举及其泛化中的四个对象:常规覆盖的枚举; g-循环A-覆盖的枚举;对称有向图的自同构的提升;正则覆盖的 zeta 函数。除 n 为素数的情况外,计算图 G 的正则 n 重覆盖相对于 G 的自同构群 Γ 的同构类的一般问题仍未解决。 G 的正则 p^n 重覆盖的 Γ 同构类的枚举是一个自然问题。 G 的规则 p^2 重覆盖要么是 G 的 Z_p×Z_p-覆盖,要么是 Z_<p2>-覆盖。我们枚举 G 的 Z_p×Z_p-覆盖的 Γ 同构类。此外,我们证明对于任何素数 p(>2) 和任何 3≤n≤p。接下来,对于连通对称有向图D、有限群A和g∈A,我们将D的g循环A-覆盖视为图的正则覆盖的推广。我们枚举了 D 的 g-循环 Z_p×Z_p-covers 和 g-cycl Z_p^3-covers 的 Γ-同构类。在 A 是交换群的情况下,我们给出了 D 的两个 g-循环 A-covers 相对于 D 的自同构群 Γ 同构的表征。因此,我们枚举了 D 的 g-循环 Z_2^n-覆盖和 g-循环 Z_<2n>-覆盖。对于对称有向图 D 的自同构群 Γ,我们给出了 Γ 对于 D 的循环 A-覆盖具有升力的充要条件,并将 Γ 的升力刻画为 A 的分裂扩展。作为特征分解公式的应用 图 G 的正则覆盖的多项式,我们得到 G 的正则覆盖的 zeta 函数的因式分解。此外,我们对对称有向图的 g-循环 A-覆盖的 zeta 函数进行因式分解。
项目成果
期刊论文数量(38)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H. Mizuno, I. Sato: "Isomorphisms of cyclic abelian covers of symmetric digraphs"Ars Combinatoria. 54. 51-64 (2000)
H. Mizuno、I. Sato:“对称有向图的循环阿贝尔覆盖的同构”Ars Combinatoria。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H. Mizuno, I. Sato: "L-functions of graph coverings"JP Journal of Algebra, Number Theory and Applications. 1(3). 235-250 (2001)
H. Mizuno、I. Sato:“图覆盖的 L 函数”JP 代数杂志、数论与应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H. Mizuno, I. Sato: "Isomorphisms of some regular fourfold coverings"Far East Journal of Mathematical Sciences. (to appear).
H. Mizuno,I. Sato:“一些正则四重覆盖的同构”远东数学科学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
水野弘文, 佐藤巌: "L-functions of graph coverings"JP Journal of Algebra, Number Theory and Applications. 1(3). 235-250 (2001)
Hirofumi Mizuno,Iwao Sato:“图覆盖的 L 函数”JP 代数杂志,数论与应用 1(3) 235-250 (2001)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
水野弘文: "Zeta functions of graph coverings"Journal of Combinatorial Theory Series B. 80. 247-257 (2000)
Hirofumi Mizuno:“图覆盖的 Zeta 函数”Journal of Combinatorial Theory Series B.80.247-257 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SATO Iwao其他文献
Autonomy and Mobilization : Two Faces of Japan's Civil Society
自治与动员:日本公民社会的两个面孔
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
ADACHI;Motohiro;SATO Iwao - 通讯作者:
SATO Iwao
町田市における団地建設の影響とその後の課題 : 少子高齢時代の団地再生
町田市住宅小区建设的影响及后续课题:少子高龄化时代的住宅小区的活性化
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
ADACHI;Motohiro;SATO Iwao;平山洋介;松本 暢子 - 通讯作者:
松本 暢子
SATO Iwao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SATO Iwao', 18)}}的其他基金
A generalization of zeta function of a graph and its application
图zeta函数的推广及其应用
- 批准号:
23540176 - 财政年份:2011
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Local Governance as Multi-organizational Cooperation to Secure the Livelihood of Inhabitants
地方治理多组织合作保障民生
- 批准号:
22330020 - 财政年份:2010
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interdisciplinary and historical study on the European judicial statistics
欧洲司法统计的跨学科和历史研究
- 批准号:
19330004 - 财政年份:2007
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
General Study on the Social Transition and the Reestablishment of the Housing System in Japan
日本社会变迁与住房制度重建综述
- 批准号:
16530034 - 财政年份:2004
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Citizen's Access to Legal Advice and Social Stratification in Contemporary Japan
当代日本公民获得法律咨询的机会和社会分层
- 批准号:
15084203 - 财政年份:2003
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
Zeta functions of graphs and coverings
图和覆盖层的 Zeta 函数
- 批准号:
15540147 - 财政年份:2003
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Expression of tenascin-Xon rat TMJ in functional property
Tenascin-Xon大鼠TMJ功能特性的表达
- 批准号:
13671918 - 财政年份:2001
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Socio-legal study on the function of voluntary association in the process of legal mobilization by citizens
公民自愿结社在公民法律动员过程中作用的社会法学研究
- 批准号:
12620009 - 财政年份:2000
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developmental changes and eddect of soft diet on enzyme activites and on morphology of rat masseter and cortex mitochondria
软食对大鼠咬肌和皮质线粒体酶活性及形态的发育变化及影响
- 批准号:
10671722 - 财政年份:1998
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study on the High Rate of Litigation in Germany
德国高诉讼率研究
- 批准号:
08620009 - 财政年份:1996
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
一类特殊Abelian群的子群计数问题
- 批准号:12301006
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Exploration of Crystal Surface Structures through Enumeration of Discrete Structures on an Infinite Plane and Similarity Design
通过无限平面上离散结构的枚举和相似性设计探索晶体表面结构
- 批准号:
23H03461 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
LEAPS-MPS: Algebraic and Combinatorial Methods in Permutation Enumeration
LEAPS-MPS:排列枚举中的代数和组合方法
- 批准号:
2316181 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
STTR Phase I: Feasibility of multi-layer microplate test for rapid detection and enumeration of Salmonella spp. in raw poultry and processing environment samples
STTR 第一阶段:用于快速检测和计数沙门氏菌的多层微孔板测试的可行性。
- 批准号:
2135699 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Enumeration and random generation of contingency tables with given margins
具有给定边距的列联表的枚举和随机生成
- 批准号:
DP220103074 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Projects
Study on developing enumeration algorithms based on a supergraph technique
基于超图技术的枚举算法开发研究
- 批准号:
22K17849 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Game Values, Temperature, and Enumeration of Placement Games
放置游戏的游戏值、温度和枚举
- 批准号:
RGPIN-2022-04273 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Enumeration, random tilings and integrable probability
枚举、随机平铺和可积概率
- 批准号:
574832-2022 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
University Undergraduate Student Research Awards
Special orthogonal matrices: existence, enumeration, and applications
特殊正交矩阵:存在性、枚举和应用
- 批准号:
RGPIN-2019-05389 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Game Values, Temperature, and Enumeration of Placement Games
放置游戏的游戏值、温度和枚举
- 批准号:
DGECR-2022-00452 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Launch Supplement
Computable Mathematics Measured by Enumeration Degrees
用枚举度来衡量的可计算数学
- 批准号:
2053848 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Continuing Grant