Zeta functions of graphs and coverings
图和覆盖层的 Zeta 函数
基本信息
- 批准号:15540147
- 负责人:
- 金额:$ 1.15万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We express an L-function of a regular covering of a graph G by using that of G. Moreover, we treat zeta functions and L-functions of a semiregular bipartite graph, its line graph, its middle graph and their regular coverings, and present an analogue of the Selberg trace formula for an L-function of a semiregular bipartite graph.We consider weighted zeta functions and L-functions of digraphs, and give their determinant expressions. Moreover, we present determinant expressions for weighted zeta functions and weighted L-functions of graphs, and express the weighted zeta function of a regular covering of a graph as a product of its weighted L-functions. By using a similar method to the above one, we present determinant expressions for the weighted complexities of a graph and its (regular or irregular) covering. Furthermore, we present a new decomposition formula for the weighted zeta function of a (regular or irregular) covering of a graph, and study the structure of a balanced covering of a unbalanced graph as an application.Finally, we consider the Bartholdi zeta functions and Bartholdi L-functions of a graph, a digraph and their covering, and present their determinant expressions and decomposition formulas. Furthermore, we present decomposition formulas for the Bartholdi zeta function of some branched covering of a graph, and the weighted Bartholdi zeta function of a graph.
我们用 G 的函数来表达图 G 的正则覆盖的 L 函数。此外,我们处理半正则二分图、其线图、中间图及其正则覆盖的 zeta 函数和 L 函数,并提出半正则二分图的 L 函数的 Selberg 迹公式的类似物。我们考虑加权 zeta 函数和有向图的 L 函数,并给出它们 行列式表达式。此外,我们提出了图的加权 zeta 函数和加权 L 函数的行列式,并将图的正则覆盖的加权 zeta 函数表示为其加权 L 函数的乘积。通过使用与上述方法类似的方法,我们提出了图及其(规则或不规则)覆盖的加权复杂度的行列式。此外,我们提出了图的(规则或不规则)覆盖的加权zeta函数的新分解公式,并研究了不平衡图的平衡覆盖的结构作为应用。最后,我们考虑了图、有向图及其覆盖的Bartholdi zeta函数和Bartholdi L函数,并给出了它们的行列式和分解公式。此外,我们提出了图的某些分支覆盖的 Bartholdi zeta 函数的分解公式,以及图的加权 Bartholdi zeta 函数。
项目成果
期刊论文数量(120)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bartholdi zeta functions of digraphs
- DOI:10.1016/j.ejc.2003.07.001
- 发表时间:2003-11
- 期刊:
- 影响因子:0
- 作者:H. Mizuno;I. Sato
- 通讯作者:H. Mizuno;I. Sato
被覆グラフとその拡張の数え上げ
覆盖图的枚举及其扩展
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:H.Mizuno;I.Sato;I.Sato;佐藤 巌;水野 弘文;佐藤 巌;水野 弘文;佐藤厳
- 通讯作者:佐藤厳
水野弘文: "The semicircle law for semiregular bipartite graphs"Journal of Combinatorial Theory Series A. 101. 174-190 (2003)
Hirofumi Mizuno:“半正二部图的半圆定律”Journal of Combinatorial Theory Series A. 101. 174-190 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
L-functions of line graphs of semiregular bipartite graphs
半正则二部图的线图的 L 函数
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:H.Mizuno;I.Sato;I.Sato
- 通讯作者:I.Sato
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SATO Iwao其他文献
Autonomy and Mobilization : Two Faces of Japan's Civil Society
自治与动员:日本公民社会的两个面孔
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
ADACHI;Motohiro;SATO Iwao - 通讯作者:
SATO Iwao
町田市における団地建設の影響とその後の課題 : 少子高齢時代の団地再生
町田市住宅小区建设的影响及后续课题:少子高龄化时代的住宅小区的活性化
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
ADACHI;Motohiro;SATO Iwao;平山洋介;松本 暢子 - 通讯作者:
松本 暢子
SATO Iwao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SATO Iwao', 18)}}的其他基金
A generalization of zeta function of a graph and its application
图zeta函数的推广及其应用
- 批准号:
23540176 - 财政年份:2011
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Local Governance as Multi-organizational Cooperation to Secure the Livelihood of Inhabitants
地方治理多组织合作保障民生
- 批准号:
22330020 - 财政年份:2010
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interdisciplinary and historical study on the European judicial statistics
欧洲司法统计的跨学科和历史研究
- 批准号:
19330004 - 财政年份:2007
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
General Study on the Social Transition and the Reestablishment of the Housing System in Japan
日本社会变迁与住房制度重建综述
- 批准号:
16530034 - 财政年份:2004
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Citizen's Access to Legal Advice and Social Stratification in Contemporary Japan
当代日本公民获得法律咨询的机会和社会分层
- 批准号:
15084203 - 财政年份:2003
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
Expression of tenascin-Xon rat TMJ in functional property
Tenascin-Xon大鼠TMJ功能特性的表达
- 批准号:
13671918 - 财政年份:2001
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Socio-legal study on the function of voluntary association in the process of legal mobilization by citizens
公民自愿结社在公民法律动员过程中作用的社会法学研究
- 批准号:
12620009 - 财政年份:2000
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Enumeration of Graph Coverings and Their Generalization
图覆盖的枚举及其泛化
- 批准号:
11640145 - 财政年份:1999
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developmental changes and eddect of soft diet on enzyme activites and on morphology of rat masseter and cortex mitochondria
软食对大鼠咬肌和皮质线粒体酶活性及形态的发育变化及影响
- 批准号:
10671722 - 财政年份:1998
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study on the High Rate of Litigation in Germany
德国高诉讼率研究
- 批准号:
08620009 - 财政年份:1996
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Conference: Random matrices from quantum chaos to the Riemann zeta function.
会议:从量子混沌到黎曼 zeta 函数的随机矩阵。
- 批准号:
2306332 - 财政年份:2023
- 资助金额:
$ 1.15万 - 项目类别:
Standard Grant
Applications of functional analysis to the theory of the zeta function.
泛函分析在 zeta 函数理论中的应用。
- 批准号:
23K03050 - 财政年份:2023
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Moments of character sums and of the Riemann zeta function via multiplicative chaos
乘性混沌的特征和矩和黎曼 zeta 函数矩
- 批准号:
EP/V055755/1 - 财政年份:2022
- 资助金额:
$ 1.15万 - 项目类别:
Research Grant
Zeros and discrete value distribution of the Riemann zeta function and its derivatives
黎曼 zeta 函数及其导数的零点和离散值分布
- 批准号:
18K13400 - 财政年份:2018
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Generating functions of the zeta-function derived from cusp forms
从尖点形式导出 zeta 函数的生成函数
- 批准号:
16K05078 - 财政年份:2016
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Extreme value statistics of characteristic polynomials of random matrices and the Riemann zeta-function
随机矩阵特征多项式和黎曼zeta函数的极值统计
- 批准号:
1792464 - 财政年份:2016
- 资助金额:
$ 1.15万 - 项目类别:
Studentship
Research related to value distribution of zeta function and infinitely divisible distribution
zeta函数值分布及无限可分分布相关研究
- 批准号:
16K05077 - 财政年份:2016
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A transfer operator approach to Maass cusp forms and the Selberg zeta function
Maass 尖点形式和 Selberg zeta 函数的传递算子方法
- 批准号:
EP/K000799/1 - 财政年份:2013
- 资助金额:
$ 1.15万 - 项目类别:
Research Grant
On analytic behaviour of zeta-function and its applications to the arithmetical error term
Zeta 函数的解析行为及其在算术误差项中的应用
- 批准号:
24540015 - 财政年份:2012
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




