Propagation of singularities for nonlinear hyperbolic, equations
非线性双曲方程的奇点传播
基本信息
- 批准号:13640226
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have studied the Cauchy problem for nonlinear hyperbolic equations, especially the global theory for it. The difficulties of this problem is the appearance of singularities in finite time. Our problem is how to extend the solutions beyond the singularities. We explain our method. First we lift the equations into a higher dimensional space, and rewrite them as Pfaffian problems. They have sometimes smooth solutions in the large. We call them as "geometric solutions". Next we project them to the base space, and construct a reasonable "weak solution". This is our program. Therefore we do not change the equations essentially. We have expected that various kinds of results would be unified by our method. Though our program has been true for single first order partial differential equations, it has not generally been correct for higher order partial differential equations and systems. But, as our approach is very natural, we have continued our considerations by the same method. In this process we have solved many examples in explicit form and compared our solutions with another results obtained until now. Then we have had some question on the mathematical formulation of fluid mechanics. Refer to our "Research report". On the other hand we have considered several unsolved problems for single first order equations, and recognized that our program is correct. For example, an existence domain of solution is covered by a family of characteristic curves. Then we have constructed an example such that the boundary of the domain is obtained as an envelope of the characteristic curves, and that we can not extend the solution beyond the boundary. We have also studied an example where the equation is not convex with respect to p=(δu/δx_1, δu/δx_n) and showed that our program is correct.
我们研究了非线性双曲型方程的柯西问题,特别是它的整体理论,该问题的难点是在有限时间内奇点的出现。我们的问题是如何将解扩展到奇点之外。我们解释我们的方法。首先,我们将方程提升到高维空间,并将其重写为Pfweenan问题。它们有时在总体上有平滑的解。我们称之为“几何解”。然后将它们投影到基空间,构造出一个合理的“弱解”。这是我们的计划。因此,我们基本上不改变方程。我们期望用我们的方法统一各种结果。虽然我们的程序对单个一阶偏微分方程是正确的,但对高阶偏微分方程和系统通常是不正确的。但是,由于我们的做法是非常自然的,我们继续用同样的方法进行审议。在这个过程中,我们已经解决了许多例子的显式形式,并比较我们的解决方案与其他结果,直到现在。然后我们对流体力学的数学公式提出了一些问题。请参阅我们的“研究报告”。另一方面,我们考虑了几个单一阶方程的未解问题,并认识到我们的程序是正确的。例如,解的存在域被一族特征曲线所覆盖。然后我们构造了一个例子,使得区域的边界作为特征曲线的包络而获得,并且我们不能将解延伸到边界之外。我们还研究了方程关于p=(δu/δx_1,δu/δx_n)非凸的一个例子,证明了我们的程序是正确的。
项目成果
期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Geometric solutions of nonlinear second order hyperbolic equations
非线性二阶双曲方程的几何解
- DOI:
- 发表时间:2002
- 期刊:
- 影响因子:0
- 作者:Mikio TSUJI;Mikio TSUJI;Mikio TSUJI;Mikio TSUJI;Mikio TSUJI;Mikio TSUJI;Mikio TSUJI
- 通讯作者:Mikio TSUJI
Mikio TSUJI: "Some remarks on nonlinear hyperbolic equations and systems"Abstract and applied analysis (World Scientific). (accepted for publication).
Mikio TSUJI:“关于非线性双曲方程和系统的一些评论”摘要和应用分析(世界科学)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Mikio TSUJI: "Geometric approach to certain systems of conservation laws"京大数理解析研究所講究録. 1260. 24-32 (2002)
Mikio TSUJI:“某些守恒定律系统的几何方法”京都大学数学科学研究所 Kokyuroku。1260. 24-32 (2002)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Mikio TSUJI, NGUYEN DUY Thai Son: "Geometric solutions of nonlinear second order hyperbolic equations"Acta Mathematica Vietnamica. (to appear).
Mikio TSUJI、NGUYEN DUY Thai Son:“非线性二阶双曲方程的几何解”Acta Mathematica Vietnamica。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Mikio TSUJI: "Integration and singularities of solutions for nonlinear second order hyperbolic equations"Hyperbolic differential equations and related problems (Marcel Dekker, Inc). 109-127 (2003)
Mikio TSUJI:“非线性二阶双曲方程解的积分和奇异性”双曲微分方程和相关问题(Marcel Dekker,Inc)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TSUJI Mikio其他文献
TSUJI Mikio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TSUJI Mikio', 18)}}的其他基金
DEVELOPMENT OF MILLIMETER-WAVE CIRCUIT COMPONENTS BASED ON TRANSMISSION AND LEAKY PROPERTIES OF THE ELECTROMAGNETIC WAVE IN ARTIFICIAL MEDIA
基于电磁波在人造介质中的传输和泄漏特性的毫米波电路组件的开发
- 批准号:
19560359 - 财政年份:2007
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SPACE-WAVE CHARACTERISTICS OF MILLIMETER-WAVE GUIDES AND DEVELOPMENT OF LEAKY-WAVE ANTENNAS WITH HIGH PERFORMANCE
毫米波波导的空波特性及高性能漏波天线的研制
- 批准号:
13650439 - 财政年份:2001
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Propagation of singularities in nonlinear problems
非线性问题中奇点的传播
- 批准号:
10640219 - 财政年份:1998
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Singularities of solutions for Monge-Ampere equations
Monge-Ampere 方程解的奇异性
- 批准号:
07640261 - 财政年份:1995
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical Analysis of Electromagnetic Scattering from Three Dimensional Objects with Arbitrary Shape and Its Experimsents
三维任意形状物体电磁散射的数值分析及实验
- 批准号:
04650296 - 财政年份:1992
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Exploring Phases of Matter With Restrictive Conservation Laws: Anomalies, Topology, and Dynamics
用限制性守恒定律探索物质相:异常、拓扑和动力学
- 批准号:
2313858 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Continuing Grant
Stability, Uniqueness, and Existence for Solutions of Hyperbolic Conservation Laws and Nonlinear Wave Equations
双曲守恒定律和非线性波动方程解的稳定性、唯一性和存在性
- 批准号:
2306258 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Stability Theory for Systems of Hyperbolic Conservation Laws
双曲守恒定律系统的稳定性理论
- 批准号:
2306852 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Regularity and Approximation of Solutions to Conservation Laws
守恒定律解的正则性和近似性
- 批准号:
2306926 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Entropy-Stable Time-Stepping for Conservation Laws
守恒定律的熵稳定时间步进
- 批准号:
575539-2022 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Asymptotic behavior of global in time solutions to the viscous conservation laws
粘性守恒定律全局时间解的渐近行为
- 批准号:
22K03371 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conservation laws in microscopic wetting: from equilbrium systems to nonequilibrium systems
微观润湿守恒定律:从平衡系统到非平衡系统
- 批准号:
22H01400 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Efficient Neural Network Based Numerical Schemes for Hyperbolic Conservation Laws
基于高效神经网络的双曲守恒定律数值方案
- 批准号:
2208518 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Stability of entropy solutions to the Cauchy problem for conservation laws
守恒定律柯西问题熵解的稳定性
- 批准号:
22K03349 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and analysis of a structure-preserving scheme for the Liu-Wu model with conservation laws both in bulk and on the boundary
具有整体和边界守恒定律的六吴模型结构保持方案的设计与分析
- 批准号:
21K20314 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Research Activity Start-up