Research on Unified Discovery of Exceptions from Massive Data
海量数据异常统一发现研究
基本信息
- 批准号:13680436
- 负责人:
- 金额:$ 2.69万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research is to study and develop a data mining method which discovers interesting exceptions from massive data in a uniform way based on various learning methods, and to justify its effectiveness by experiments with real data sets.The progress in fiscal year 2001 consists of the followings. (1) Development and refinement of various exception discovery methods including those based on support vector machines, bloomy decision tree, exception rule discovery, and boosting. We mainly worked on data squashing in order to cope with massive data. (2) Experimental evaluation of the developed exception discovery methods. We also summarized data mining contests each of which represents an occasion of systematic evaluation for various knowledge discovery methods with a set of common problems. (3) Planning and investigation of a unified exception discovery method. We also performed a novel type of worst-case analysis of rule discovery as a foundation of automated discovery.In fiscal year 2002, we first developed a unified exception rule discovery and implemented it on computers. Important issues in the integration include usefulness of discovered knowledge and effectiveness of the approach based on the experimental results in the previous fiscal year, In the development, each exception discovery method was refined if necessary. According to the results of preliminary experiments, we have chosen the unified exception discovery method which employs exception rule discovery method and outlier detection method based on boosting as our final system among the exception discovery methods developed and refined in the last fiscal year. In the latter half of this fiscal year, we performed final experiments in which we applied the implemented unified exception discovery method to preprocessed massive data.
本研究的目的是研究和开发一种基于各种学习方法的数据挖掘方法,以统一的方式从大量数据中发现有趣的异常,并通过真实数据集的实验来证明其有效性。2001财政年度的进展情况如下:(1)开发和改进了基于支持向量机、bloomy决策树、异常规则发现和boosting的各种异常发现方法。我们主要致力于数据压缩,以应对海量数据。(2)对所开发的异常发现方法进行了实验评价。我们还总结了数据挖掘竞赛,每一场竞赛都代表了对各种知识发现方法进行系统评估的场合。(3)规划和研究统一的异常发现方法。我们还执行了一种新的规则发现的最坏情况分析,作为自动发现的基础。在2002财政年度,我们首先开发了统一的异常规则发现,并在计算机上实现了它。集成中的重要问题包括发现知识的有用性和基于上一财年实验结果的方法的有效性。在开发过程中,每个异常发现方法都在必要时进行了改进。根据前期实验的结果,在上一财年开发完善的异常发现方法中,我们选择了采用异常规则发现方法和基于boosting的离群值检测方法的统一异常发现方法作为最终系统。在本财年下半年,我们进行了最后的实验,将实现的统一异常发现方法应用于预处理的海量数据。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
鈴木英之進: "例外ルールの発見"システム制御情報学会論文誌. 13・4(印刷中). (2002)
铃木秀信:“异常规则的发现”,系统、控制和信息工程师学会汇刊 13・4(出版中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shutaro Inatani: "Data Squashing for Speeding up Boosting-Based Outlier Detection , Foundations of Intelligent Systems, LNAI"Springer. 2366 (2002)
Shutaro Inatani:“用于加速基于增强的异常值检测的数据压缩,智能系统基础,LNAI”Springer。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Einoshin Suzuki: "Bloomy Decision Tree for Multi-Objective Classification"Principles of Data Mining and Knowledge Discovery, LNAI, Springer. 2168. 436-447 (2001)
Einoshin Suzuki:“多目标分类的 Bloomy 决策树”数据挖掘和知识发现原理,LNAI,Springer。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yuu Yamada: "Toward Knowledge-Driven Spiral Discovery of Exception Rules"Proc. 2002 IEEE International Conference on Fuzzy Systems. 2. 872-877 (2002)
Yuu Yamada:“走向知识驱动的异常规则螺旋发现”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
鈴木英之進: "サポートベクターマシンに基づく医療データからの事例発見"オペレーションズ・リサーチ. 46・5. 243-248 (2001)
铃木秀信:“基于支持向量机的医疗数据案例发现”运筹学 46・5(2001)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUZUKI Einoshin其他文献
SUZUKI Einoshin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUZUKI Einoshin', 18)}}的其他基金
Realization of Long-Term Monitoring by a Home-Use Autonomous Mobile Robot Using Concept Drift Modeling
利用概念漂移建模实现家用自主移动机器人的长期监测
- 批准号:
24650070 - 财政年份:2012
- 资助金额:
$ 2.69万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Multi-task Data Mining Based on Dynamic Representation Bias
基于动态表示偏差的多任务数据挖掘
- 批准号:
21300053 - 财政年份:2009
- 资助金额:
$ 2.69万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Structured Data Mining System which Considers Interactions of Structured Rules
考虑结构化规则交互的结构化数据挖掘系统
- 批准号:
18300047 - 财政年份:2006
- 资助金额:
$ 2.69万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Circumscribed-Polyhedron Approximation for Maximum-Hypersphere-Search in High-Dimensional Region
高维区域最大超球面搜索的外接多面体近似
- 批准号:
11680382 - 财政年份:1999
- 资助金额:
$ 2.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Autonomous Data Mining System based on Constructive Learning
基于建构性学习的自主数据挖掘系统
- 批准号:
09680359 - 财政年份:1997
- 资助金额:
$ 2.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319370 - 财政年份:2023
- 资助金额:
$ 2.69万 - 项目类别:
Standard Grant
Integration of a deep probabilistic model and an outlier detection method with an attention mechanism and its application to super-high dimensional time series data
深度概率模型与带有注意力机制的异常值检测方法的集成及其在超高维时间序列数据中的应用
- 批准号:
23H03357 - 财政年份:2023
- 资助金额:
$ 2.69万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319371 - 财政年份:2023
- 资助金额:
$ 2.69万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319372 - 财政年份:2023
- 资助金额:
$ 2.69万 - 项目类别:
Standard Grant
Collaborative Research: IIS-III Towards Fair Outlier Detection
协作研究:IIS-III 迈向公平的异常值检测
- 批准号:
2310482 - 财政年份:2023
- 资助金额:
$ 2.69万 - 项目类别:
Standard Grant
Collaborative Research: IIS-III: Small Towards Fair Outlier Detection
协作研究:IIS-III:小到公平的异常值检测
- 批准号:
2310481 - 财政年份:2023
- 资助金额:
$ 2.69万 - 项目类别:
Standard Grant
Constructing Highly Accurate Supervised Outlier Detection Method by Quasiconformal Extension and Generative Adversarial Networks
通过拟共形扩展和生成对抗网络构建高精度监督异常值检测方法
- 批准号:
22K12050 - 财政年份:2022
- 资助金额:
$ 2.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Outlier Detection in High-Dimensional Big Data using Bio-Inspired Methods for Emerging Applications in Engineering, Healthcare, and Business
使用仿生方法进行高维大数据中的异常值检测,用于工程、医疗保健和商业领域的新兴应用
- 批准号:
RGPIN-2017-04192 - 财政年份:2021
- 资助金额:
$ 2.69万 - 项目类别:
Discovery Grants Program - Individual
Outlier Detection in High-Dimensional Big Data using Bio-Inspired Methods for Emerging Applications in Engineering, Healthcare, and Business
使用仿生方法进行高维大数据中的异常值检测,用于工程、医疗保健和商业领域的新兴应用
- 批准号:
RGPIN-2017-04192 - 财政年份:2020
- 资助金额:
$ 2.69万 - 项目类别:
Discovery Grants Program - Individual
Evaluation of Artificial Outlier Generation for Improving Clustering and Outlier Detection Methods
用于改进聚类和异常值检测方法的人工异常值生成的评估
- 批准号:
540783-2019 - 财政年份:2019
- 资助金额:
$ 2.69万 - 项目类别:
University Undergraduate Student Research Awards