Autonomous Data Mining System based on Constructive Learning

基于建构性学习的自主数据挖掘系统

基本信息

  • 批准号:
    09680359
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

This research presents an autonomous method for discovering prediction rules with dynamic bias selection. A prototype system has been developed, and its effectiveness was demonstrated by experiments.In current data mining systems, an user is involved in both pre-processing of a data set and knowledge discovery. In order to reduce his burden of choosing and adjusting multiple mining algorithms, we propose a knowledge discovery system, which autonomously selects learning methods based on constructive induction. Our task is prediction rule discovery. A prediction rule, which is aimed at predicting the class of an unseen example, deserves special attention due to its usefulness in various domains such as exploratory data analysis and automatic construction of a knowledge base.Our method consists of two phases : 1) pre-processing of a data set by autonomous discretization ; 2) knowledge discovery by autonomous decision of knowledge representation and autonomous adjustment of evaluation criteria. Our method, based on novel data-driven criteria and constraints, selects appropriate biases, each of which is a component of a learning algorithm. Available biases are an equal-frequency method and a minimum entropy method for discretization ; a conjunction rule and an M of N rule for knowledge representation ; J-measure and predictiveness for evaluation criterion.Our approach has been validated using 47 discovery tasks with real-world data sets such as retail sale data. We have discussed quantitative evaluation criteria for prediction rule discovery, and proposed J-measure with cross-validation. Our method) compared with the best combinations of biases, achieved more than 90% J-measure with cross-validation in 30 tasks. Careful analysis revealed that our approach is effective unless provided data set is extremely small. We have also assumed a large-scale data set, and developed a parallel system on multiple personal computers.
本研究提出一种具有动态偏差选择的预测规则自动发现方法。在现有的数据挖掘系统中,用户既要参与数据集的预处理,又要参与知识发现。为了减少他的负担,选择和调整多个挖掘算法,我们提出了一个知识发现系统,自主选择学习方法的基础上建设性归纳。我们的任务是预测规则发现。预测规则是一种用于预测未知样本类别的规则,它在探索性数据分析和知识库自动构建等领域具有重要的应用价值,该方法包括两个阶段:1)对数据集进行自主离散化预处理;(2)通过自主决定知识表示和自主调整评价标准来进行知识发现。我们的方法基于新的数据驱动的标准和约束,选择适当的偏差,每个偏差都是学习算法的一个组成部分。可用的偏见是一个等频率的方法和最小熵方法的离散化;一个连接规则和N规则的知识表示; J-措施和预测性的评价criterion. We方法已被验证使用47发现任务与现实世界的数据集,如零售销售数据。我们讨论了预测规则发现的定量评价标准,并提出了交叉验证的J-测度。与最佳偏差组合相比,在30个任务中,交叉验证的J-测度达到90%以上。仔细的分析表明,我们的方法是有效的,除非提供的数据集是非常小的。我们还假设了一个大规模的数据集,并在多台个人计算机上开发了一个并行系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Suzuki, E.and Ohno, T.: "Prediction Rule Discovery based on Dynamic Bias Selection" Proc. PAKDD-99, LNAI, Springer-Verlag. 印刷中. (1999)
Suzuki, E. 和 Ohno, T.:“基于动态偏差选择的预测规则发现”Proc. PAKDD-99,LNAI,Springer-Verlag 已出版。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Suzuki, E.and Ohno, T.: "Prediction Rule Discovery based on Dynamic Bias Selection" Proc.PAKDD-99, LNAI,Springer-Verlag. (in print). (1999)
Suzuki, E. 和 Ohno, T.:“基于动态偏差选择的预测规则发现”Proc.PAKDD-99,LNAI,Springer-Verlag。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SUZUKI Einoshin其他文献

SUZUKI Einoshin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SUZUKI Einoshin', 18)}}的其他基金

Realization of Long-Term Monitoring by a Home-Use Autonomous Mobile Robot Using Concept Drift Modeling
利用概念漂移建模实现家用自主移动机器人的长期监测
  • 批准号:
    24650070
  • 财政年份:
    2012
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Multi-task Data Mining Based on Dynamic Representation Bias
基于动态表示偏差的多任务数据挖掘
  • 批准号:
    21300053
  • 财政年份:
    2009
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Structured Data Mining System which Considers Interactions of Structured Rules
考虑结构化规则交互的结构化数据挖掘系统
  • 批准号:
    18300047
  • 财政年份:
    2006
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research on Unified Discovery of Exceptions from Massive Data
海量数据异常统一发现研究
  • 批准号:
    13680436
  • 财政年份:
    2001
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Circumscribed-Polyhedron Approximation for Maximum-Hypersphere-Search in High-Dimensional Region
高维区域最大超球面搜索的外接多面体近似
  • 批准号:
    11680382
  • 财政年份:
    1999
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
GEM: Explorative Global-To Kinetic-Scale Modeling of Collisionless Shocks Using Physics-Informed Data Mining and Machine Learning
GEM:使用物理信息数据挖掘和机器学习对无碰撞冲击进行探索性全局到动力学尺度建模
  • 批准号:
    2225463
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Data Mining and Machine Learning Guided QM/MM and QM-Cluster Modeling of Enzymatic Reactions
数据挖掘和机器学习引导的酶反应 QM/MM 和 QM 簇建模
  • 批准号:
    10685949
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
Data Mining and Machine Learning for System Model Discovery and Applications
用于系统模型发现和应用的数据挖掘和机器学习
  • 批准号:
    RGPIN-2019-05163
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Constructing a cloud-based battery management system to optimize lithium-ion battery system performance and lifespan using machine learning and data mining techniques
利用机器学习和数据挖掘技术构建基于云的电池管理系统,以优化锂离子电池系统性能和寿命
  • 批准号:
    566616-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Improved Infrastructure Assessments of Water Main Breaks Using Data Mining and Machine Learning Algorithms
使用数据挖掘和机器学习算法改进水管破裂的基础设施评估
  • 批准号:
    RGPIN-2018-04623
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Data Mining and Machine Learning Guided QM/MM and QM-Cluster Modeling of Enzymatic Reactions
数据挖掘和机器学习引导的酶反应 QM/MM 和 QM 簇建模
  • 批准号:
    10400454
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
Constructing a cloud-based battery management system to optimize lithium-ion battery system performance and lifespan using machine learning and data mining techniques
利用机器学习和数据挖掘技术构建基于云的电池管理系统,以优化锂离子电池系统性能和寿命
  • 批准号:
    566616-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Improved Infrastructure Assessments of Water Main Breaks Using Data Mining and Machine Learning Algorithms
使用数据挖掘和机器学习算法改进水管破裂的基础设施评估
  • 批准号:
    RGPIN-2018-04623
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Data Mining and Machine Learning for System Model Discovery and Applications
用于系统模型发现和应用的数据挖掘和机器学习
  • 批准号:
    RGPIN-2019-05163
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了