Applications of the dynamical systems theory and the singularity theory to mathematical fluid mechanics

动力系统理论和奇点理论在数学流体力学中的应用

基本信息

  • 批准号:
    14204007
  • 负责人:
  • 金额:
    $ 15.89万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2004
  • 项目状态:
    已结题

项目摘要

The Navier-Stokes equations are the fundamental partial differential equations of fluid mechanics. The regularity problem of the solutions of the equations is particularly renowned but the equations also accompany other equally important issues. The present research aims at better understanding of the equations and related reaction-diffusion equations. We have achieved substantial progresses in (1)discovery of solutions of new kind, particularly nearly singular solutions possessing internal layers, (2)bifurcation analysis for progressive water waves and a development of new computational methods for water waves. S.-C.Kim and Okamoto considered rhombic periodic Navier-Stokes flows, and discovered a curious stability-exchange at large Reynolds numbers. A.Craik and Okamoto studied a three dimensional dynamical system stemming from the Navier-Stokes equations. Asymptotic behavior of its solutions was classified : a dichotomy was discovered and the reason was explained by the existence of a periodic solution. X.Chen and Okamoto proved that the Proudman-Johnson equation did not admit a blow up under the Dirichlet boundary condition, which resolved an open problem for ten years.Nagayama and Okamoto studied certain axisymmetric self-similar solutions of the Navier-Stokes equations, and proved that they possessed internal-layers for large Reynolds numbers. K.-I.Nakamura, H.Yagisita and Okamoto rigorously proved that self-similar solutions of the Navier-Stokes equations blew up in the framework of the Burgers vortex. Okamoto proved a uniqueness theorem for Crapper's waves arising in the progressive water waves.
Navier-Stokes方程是流体力学的基本偏微分方程组。方程解的正则性问题特别著名,但方程还伴随着其他同样重要的问题。本研究的目的是为了更好地理解这些方程和相关的反应扩散方程。我们在(1)新的解的发现,特别是具有内层的近奇异解的发现,(2)行进水波的分叉分析和新的水波计算方法的发展方面取得了实质性进展。S.-C.Kim和Okamoto考虑了菱形周期的Navier-Stokes流,并发现了一个奇怪的大雷诺数的稳定性交换。Craik和Okamoto研究了一个源于Navier-Stokes方程的三维动力系统。对其解的渐近行为进行了分类:发现了一个二分法,并用周期解的存在来解释其原因。X.Chen和Okamoto证明了Proudman-Johnson方程在Dirichlet边界条件下不允许爆破,从而解决了一个长达十年的公开问题。Nagayama和Okamoto研究了Navier-Stokes方程的某些轴对称自相似解,并证明了它们对于大雷诺数具有内层。K.-I.Nakamura,H.Yagisita和Okamoto严格地证明了Navier-Stokes方程的自相似解在Burgers涡的框架下爆炸了。Okamoto证明了CRapper波在行进水波中产生的唯一性定理。

项目成果

期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A theoretical and experimental study on the unidirectional motion of a camphor disk
  • DOI:
    10.1016/j.physd.2004.02.003
  • 发表时间:
    2004-07-15
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Nagayama, M;Nakata, S;Hayashima, Y
  • 通讯作者:
    Hayashima, Y
Transition of global dynamics of a polygonal vortex ring on a sphere with pole vortices
具有极涡的球体上多边形涡环的全局动力学转变
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.Sakajo
  • 通讯作者:
    T.Sakajo
M.Nagayama: "A theoretical and experimental study on the unidirectional motion of a camphor disk"Physica D. 発行予定. (2004)
M.Nagayama:“樟脑圆盘单向运动的理论和实验研究”Physica D. 即将出版(2004 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A three-dimensional autonomous system with unbounded 'bending' solutions
具有无限“弯曲”解决方案的三维自治系统
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A.D.D.Craik;H.Okamoto
  • 通讯作者:
    H.Okamoto
K.Kobayashi: "Numerical computation of water and solitary waves by the double exponential transform"J. Comp. Appl. Math.. 152. 229-241 (2003)
K.Kobayashi:“通过双指数变换对水和孤立波进行数值计算”J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OKAMOTO Hisashi其他文献

OKAMOTO Hisashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OKAMOTO Hisashi', 18)}}的其他基金

Applied Analysis on the Navier-Stokes Equations and Related Dynamical Systems
纳维-斯托克斯方程及相关动力系统的应用分析
  • 批准号:
    20244006
  • 财政年份:
    2008
  • 资助金额:
    $ 15.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
A Study of Blow-up Problems and Singular Perturbation Problems arisingin Mathematical Fluid Mechanics
数学流体力学中的爆炸问题和奇异摄动问题的研究
  • 批准号:
    17204008
  • 财政年份:
    2005
  • 资助金额:
    $ 15.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Application of the double exponential transform to integral transformations
双指数变换在积分变换中的应用
  • 批准号:
    11554002
  • 财政年份:
    1999
  • 资助金额:
    $ 15.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Studies on singular perturbation problems in nonlinear mechanics
非线性力学奇异摄动问题的研究
  • 批准号:
    11304005
  • 财政年份:
    1999
  • 资助金额:
    $ 15.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Mathematical Open Problems of the Navier-Stokes Equations
纳维-斯托克斯方程的数学开放问题
  • 批准号:
    09304023
  • 财政年份:
    1997
  • 资助金额:
    $ 15.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
On the research and development of fast solvers arising in scientific computation
科学计算中快速求解器的研究与开发
  • 批准号:
    09554003
  • 财政年份:
    1997
  • 资助金额:
    $ 15.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mathematical analysis and numerical computation of nonlinear partial differential equations
非线性偏微分方程的数学分析与数值计算
  • 批准号:
    08454028
  • 财政年份:
    1996
  • 资助金额:
    $ 15.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Studies on mathematical analysis and numerical computation of the Nevier-Stokes equations
内维-斯托克斯方程的数学分析与数值计算研究
  • 批准号:
    07304019
  • 财政年份:
    1995
  • 资助金额:
    $ 15.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)

相似海外基金

Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持不连续伽辽金方法
  • 批准号:
    2309591
  • 财政年份:
    2023
  • 资助金额:
    $ 15.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持间断伽辽金方法
  • 批准号:
    2309590
  • 财政年份:
    2023
  • 资助金额:
    $ 15.89万
  • 项目类别:
    Standard Grant
Analysis of Singularity Formation in Three-Dimensional Euler Equations and Search for Potential Singularities in Navier-Stokes Equations
三维欧拉方程奇异性形成分析及纳维-斯托克斯方程潜在奇异性搜索
  • 批准号:
    2205590
  • 财政年份:
    2022
  • 资助金额:
    $ 15.89万
  • 项目类别:
    Continuing Grant
A vorticity preserving finite element method for the compressible Euler equations on unstructured grids
非结构网格上可压缩欧拉方程的保涡有限元法
  • 批准号:
    429491391
  • 财政年份:
    2019
  • 资助金额:
    $ 15.89万
  • 项目类别:
    Research Fellowships
A Computer-Assisted Analysis Framework for Studying Finite Time Singularities of the 3D Euler Equations and Related Models
用于研究 3D 欧拉方程及相关模型的有限时间奇异性的计算机辅助分析框架
  • 批准号:
    1907977
  • 财政年份:
    2019
  • 资助金额:
    $ 15.89万
  • 项目类别:
    Standard Grant
Well-posedness and stability for relativistic Euler equations with free boundaries
具有自由边界的相对论欧拉方程的适定性和稳定性
  • 批准号:
    EP/N016777/1
  • 财政年份:
    2016
  • 资助金额:
    $ 15.89万
  • 项目类别:
    Research Grant
Non- and Semiparametric Techniques for Euler Equations
欧拉方程的非参数和半参数技术
  • 批准号:
    235833760
  • 财政年份:
    2013
  • 资助金额:
    $ 15.89万
  • 项目类别:
    Research Grants
3D incompressible Euler equations: finite time singularities and Onsager's conjecture
3D 不可压缩欧拉方程:有限时间奇点和 Onsager 猜想
  • 批准号:
    371946-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 15.89万
  • 项目类别:
    Discovery Grants Program - Individual
3D incompressible Euler equations: finite time singularities and Onsager's conjecture
3D 不可压缩欧拉方程:有限时间奇点和 Onsager 猜想
  • 批准号:
    371946-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 15.89万
  • 项目类别:
    Discovery Grants Program - Individual
The Isentropic Euler Equations and Optimal Transport
等熵欧拉方程和最优输运
  • 批准号:
    1101423
  • 财政年份:
    2011
  • 资助金额:
    $ 15.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了