Mathematical analysis and numerical computation of nonlinear partial differential equations

非线性偏微分方程的数学分析与数值计算

基本信息

  • 批准号:
    08454028
  • 负责人:
  • 金额:
    $ 3.78万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1996
  • 资助国家:
    日本
  • 起止时间:
    1996 至 无数据
  • 项目状态:
    已结题

项目摘要

H.Okamoto discovered some new exact solutions of the Navier-Stokes equations which shed light on the singular perturbation analysis of the equations. One of them is a generalization of stagnation-point flows of Tamada and Dorrepaal which converges on a wall obliquely. Other solutions include those solutions which satisfy Leray's similarity equations. Among others, he found those solutions which are represented by the confluent hyper-geometric functions. He also studied the stability of certain stationary Navier-Stokes equations which satisfy the inflow / outflow boundary condition. Some the solutions are proved to be stable for all the Reynolds number, which is a surprising results. By the vortex method, Okamoto and Sakajo computed numerically the vortex sheet in shear flows. Some interesting interactions between vortex sheet and shear are discovered.T.Kawai and Y.Takei studied, via the algebraic analysis method, a certain aspect of singular perturbation theory of the Painleve equations. Their theory will be published in their book entitled "Algebraic Analysis of Singular Perturbation" (in Japanese) from Iwanami Shoten.K.Murota and S.Iwata made a contribution to the present study through the theory of numerical linear algebra. Some singular perturbation problem leads to a very ill-conditioned matrix problem after a suitable discretization. The techniques developed by them are very helpful when we solve such ill-conditioned matrix problem. Murota proposes many methods which leads to better accuracy and speed-up of the computation.
冈本发现了Navier-Stokes方程的一些新的精确解,从而揭示了方程的奇异摄动分析。其中之一是Tamada和Dorrepaal的滞滞点流的推广,滞滞点流斜向壁上收敛。其他解包括满足Leray相似方程的解。其中,他发现了用超几何函数表示的解。他还研究了满足流入/流出边界条件的一类稳态Navier-Stokes方程的稳定性。有些解在所有雷诺数下都是稳定的,这是一个令人惊讶的结果。Okamoto和Sakajo用涡旋法对剪切流中的涡旋片进行了数值计算。t . kawai和Y.Takei通过代数分析方法研究了Painleve方程奇异摄动理论的某些方面。他们的理论将发表在Iwanami shotenk . murota和S.Iwata合著的《奇异摄动的代数分析》(日文)一书中,他们通过数值线性代数理论对目前的研究做出了贡献。某些奇异摄动问题经过适当的离散化后,得到一个非常病态的矩阵问题。他们所开发的技术对解决这类病态矩阵问题很有帮助。Murota提出了许多提高计算精度和速度的方法。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Takahiro Kawai: "WKB analysis of Painleve transcendents with a large parameter.I" Adv.in Math.118. 1-33 (1996)
Takahiro Kawai:“具有大参数的 Painleve 超越数的 WKB 分析。I”数学 118 中的 Adv.。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
藤井 宏: "非線型力学(岩波講座「応用数学」" 岩波書店, (1995)
藤井浩:“非线性力学(岩波讲座‘应用数学’)”岩波书店,(1995)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Tetsuji Miwa: "Quantum KZ equation equation with q=1 and correlation functions of the XXZ model in the gapless regime" J.Phys.A : Math.Gen.29. 2923-2958 (1996)
Tetsuji Miwa:“q=1 的量子 KZ 方程和无间隙状态下 XXZ 模型的相关函数”J.Phys.A:Math.Gen.29。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Michio Jimbo: "Quantum KZ equation equation with q=1 and correlation functions of the XXZ model in the gapless regime" J.Phys.A : Math.Gen.29. 2923-2958 (1996)
Michio Jimbo:“q=1 的量子 KZ 方程和无间隙状态下 XXZ 模型的相关函数”J.Phys.A:Math.Gen.29。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
藤井 宏: "非線型力学(岩波高座「応用数学」)" 岩波書店, (1995)
藤井浩:“非线性力学(岩波小座“应用数学”)”岩波书店,(1995)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OKAMOTO Hisashi其他文献

OKAMOTO Hisashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OKAMOTO Hisashi', 18)}}的其他基金

Applied Analysis on the Navier-Stokes Equations and Related Dynamical Systems
纳维-斯托克斯方程及相关动力系统的应用分析
  • 批准号:
    20244006
  • 财政年份:
    2008
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
A Study of Blow-up Problems and Singular Perturbation Problems arisingin Mathematical Fluid Mechanics
数学流体力学中的爆炸问题和奇异摄动问题的研究
  • 批准号:
    17204008
  • 财政年份:
    2005
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Applications of the dynamical systems theory and the singularity theory to mathematical fluid mechanics
动力系统理论和奇点理论在数学流体力学中的应用
  • 批准号:
    14204007
  • 财政年份:
    2002
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Application of the double exponential transform to integral transformations
双指数变换在积分变换中的应用
  • 批准号:
    11554002
  • 财政年份:
    1999
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Studies on singular perturbation problems in nonlinear mechanics
非线性力学奇异摄动问题的研究
  • 批准号:
    11304005
  • 财政年份:
    1999
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Mathematical Open Problems of the Navier-Stokes Equations
纳维-斯托克斯方程的数学开放问题
  • 批准号:
    09304023
  • 财政年份:
    1997
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
On the research and development of fast solvers arising in scientific computation
科学计算中快速求解器的研究与开发
  • 批准号:
    09554003
  • 财政年份:
    1997
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Studies on mathematical analysis and numerical computation of the Nevier-Stokes equations
内维-斯托克斯方程的数学分析与数值计算研究
  • 批准号:
    07304019
  • 财政年份:
    1995
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)

相似海外基金

Applications of Geometrical Singular Perturbation Theory in Hyperplasticity Accelerated Ratcheting Models
几何奇异摄动理论在超塑性加速棘轮模型中的应用
  • 批准号:
    2888423
  • 财政年份:
    2023
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Studentship
Global structure of solutions for differential equations of singular perturbation type and exact WKB analysis
奇异摄动型微分方程解的全局结构及精确WKB分析
  • 批准号:
    19H01794
  • 财政年份:
    2019
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Painlevé paradox and geometric singular perturbation theory
Painlevé 悖论和几何奇异微扰理论
  • 批准号:
    1939397
  • 财政年份:
    2017
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Studentship
Dynamical Systems and Singular Perturbation Theory for Multiscale Reaction-Diffusion Systems
多尺度反应扩散系统的动力系统和奇异摄动理论
  • 批准号:
    1616064
  • 财政年份:
    2016
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Continuing Grant
Geometric Singular Perturbation Analysis of a Mathematical Model of Stem Cells
干细胞数学模型的几何奇异摄动分析
  • 批准号:
    478556-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 3.78万
  • 项目类别:
    University Undergraduate Student Research Awards
Phantom: A topological method to analyze macro-system and its singular perturbation
Phantom:一种分析宏观系统及其奇异摄动的拓扑方法
  • 批准号:
    15K13532
  • 财政年份:
    2015
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
The structure theory of differential equations by the algebraic analysis of singular perturbation theory
奇异摄动理论的代数分析微分方程的结构理论
  • 批准号:
    24340026
  • 财政年份:
    2012
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Singular perturbation/bifurcation analysis of the cardiac sinoatrial node model in consideration of its heterogeneous structure and the study on the generation mechanism of synchronized oscillations
考虑异质结构的心脏窦房结模型奇异摄动/分岔分析及同步振荡产生机制研究
  • 批准号:
    24500274
  • 财政年份:
    2012
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dynamical systems and singular perturbation theory for multi-scale reaction-diffusion phenomena
多尺度反应扩散现象的动力系统和奇异摄动理论
  • 批准号:
    1109587
  • 财政年份:
    2011
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Continuing Grant
Nonlinear hyperbolic-parabolic singular perturbation
非线性双曲-抛物线奇异摄动
  • 批准号:
    19540199
  • 财政年份:
    2007
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了