Study of integral operators on function spaces.
函数空间上的积分算子的研究。
基本信息
- 批准号:14540168
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We study boudedness of Toeplitz operators. Let $H$ be the upper half-space of the $n$-dimensional Euclidean space. For $O<p<\infty$, let $b^{p}=b^{p}(H,dV)$ be the class of aliharmonic functions $u$ on $H$. The class $b^{p}$ is called the harmonic Bergman space. We show the following results. Suppose that $\mu$ is a $\sigma$-finite positive Borel measure on $H$, $d\nu=\omega dV$ and $\omega$ satisfies the $(A_{q})_{\partial}$-condition for some $1<q<\infty$. There is a constant $C>0$ such that $$ \int_{H} |D^{\alpha}u|^{p} d \mu \le C\int {H}|D^{m}_{y}u|^{p} d\nu $$ for all $u \in b^{p}$ and multi-indices $\alpha$ of order $\ell$ if andonly if There are constants $K>O$ and $0<\varepsilon<1$ such that $\mu(S(w)) \le K t^{(\Yell-m)p}\nu(D_{\varepsilon}(w))$for all $w=(s,t) \in H$. Moreover, let $\mu$ be a $\sigma$-finite positive Borel measure on $\mathbb{R}^{n+1}_{+}$, $\mathbb{N} {0}=\inathbb{N} \cup \{0 Y}$ and $\mathbb{N}^{n}_{O}=\mathbb{N} {0} \times \cdots \times \mathbb{N} [O}$ ($ … More n$ factors). For a multi-index $\gamnma \in \mathbb{N}^{n}_{01$, $\partia;^{\gamma}_{x}$ denotes the differential monomial $\partialil^{|\gamma|}/\partiali^|gamma_{1}_{x_{1}}\dots \partial^{\gamma_{n}}_{x_{n}}$ and let $\partial_{t}=\partial/\partial_{t}$. We consider conditions for $\mu$ in order that there exists a constant $C>0$ such that $$\int_{\mathbb{R}^{n+1}_{+}}| \partial^{\gamma}_{x} \partial^{\ell}_{t} u|^{p}^-d \mu \le C \int {\mathbb{R}^{n+1}_{+}t^{\lambda}|\partial^{m}_{t} u|^{p}^-dV$$ for all $u \in b^{p}_{\alpha}$, where $\ell,m \in \mathbb{N}_{0}$, and $\lambda \in \mathbb{R}$. Let $D$ be the open unit disk in the complex plane and $H^{p}$ be the classical Hardy spaces on $D$. Carleson proved that a finite positive Borel measure $\mu$ on $D$ satisfies $\int_{D}|f|^{p}d \inu \le C \parallel f \parallel^{p}_{H}^p}} $ for all $f \in H^{p}$ if and only if there exists a constant $K>0$ with $\mu(S(I)) \le K |I|$ for any interval $I \subset \partial D$, where $S(I)$ is the corresponding Carleson square over $I$. We stud y conditions for $\mu$ satisfying such inequalities for parabolic Bergman functions on the upper half space. Less
研究了Toeplitz算子的有界性。设$H$是$n$维欧氏空间的上半空间。对于$O<;p<;\infty$,设$b^{p}=b^{p}(H,dv)$是$H$上的仿调和函数类$u$。类$b^{p}$称为调和Bergman空间。我们给出了以下结果。设$Mu$是$H$上的$\sigma$-有限正Borel测度,$d\nu=\omega DV$,且$\omega$满足$(A_(Q))_{\Partial}$-条件。存在一个常数$C>;0$使得$$\int_{H}|D^{\pha}u|^{p}d\u\int{H}|D^{m}_{y}u|^{p}d\nu$$对b^{p}$中的所有$u\和阶为$\ell$的多个索引$\α$当且仅当存在常数$K&>O$和$0<;1$使得$m(S(W))\le K t^{(yell-m)p}\n u(D_{varepsilon}(W))$对所有$w=(S,t)\在H$中。此外,设$\Mu$是$\mathbb{R}^{n+1}_(+)$上的$\sigma$-有限正Borel测度,$\mathbb{N}{0}=\inathbb{N}\cup\0 Y}$\mathbb{N}^{n}_{O}=\mathbb{N}{0}\次\cdots\Times\mathbb{N}[O}$($…更多n$个因素)。对于多指标$\Gammma\in\mathbb{N}^{n}_{01$,$\Partial;^{\Gamma}_{x}$表示微分单项$\partialil^{|\gamma|}/\partiali^|gamma_{1}_{x_{1}}\dots\Partial^{\Gamma_{n}}_{x_{n}}$,令$\Partial_{t}=\Partial/\Partial_{t}$。我们考虑$\MU$的条件,以便存在一个常数$C>;$$使得$$\int_{\mathbb{R}^{n+1}_{+}}|\Partial^{\Gamma}_{x}\Partial^{\ell}_{t}u|^{p}^-d\Mu\le C\int{\mathbb{R}^{n+1}_{+}t^{\lambda}|\partial^{m}_{t}u|^{p}^-dv$$,其中$\ell,m\in\mathbb{N}_{0}$,和$\lambda\in\mathbb{R}$。设$D$是复平面上的开单位圆盘,$H^{p}$是$D$上的经典Hardy空间。Carleson证明了对于H^{p}$中的所有$f,$D$上的有限正Borel测度$\MU$满足$INT_{D}|f|^{p}d\Inu\C\PARALLEL f\PARALLEL^{p}_{H}^p}}$当且仅当对任意区间$i\子集\部分D$存在常数$K>;0$,其中$S(I)$是$I$上相应的Carleson平方.研究了上半空间上抛物型Bergman函数满足这类不等式的条件。较少
项目成果
期刊论文数量(52)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Aiki, Toyohiko, Imai, Hitoshi, Ishimura, Naoyuki, Yamada, Yoshio: "Well-posedness of one-phase Stefan problems for sublinear heat equations"Journal of Nonlinear Analysis. 51. 587-606 (2002)
Aiki、Toyohiko、Imai、Hitoshi、Ishimura、Naoyuki、Yamada、Yoshio:“次线性热方程的一相 Stefan 问题的适定性”非线性分析杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Mizuta, Yoshihiro, Shimomura, Testu: "Riesz decomposition and limits at infinity for $p$-precise on a half space"京都大学数理解析研究所講究録. 1293. 98-109 (2002)
Mizuta、Yoshihiro、Shimomura、Testu:“半空间上 $p$ 精确的 Riesz 分解和无穷大极限”京都大学数学科学研究所 Kokyuroku。1293. 98-109 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yamada, Masahiro: "Carleson inequalities in weighted harmonic Bergman spaces, 0<p<1"Research Institute for Mathematical Science Kyoto university. vol.1277. 22-29 (2002)
山田正宏:“加权调和伯格曼空间中的卡尔森不等式,0<p<1”京都大学数学科学研究所。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Aiki, Toyohiko: "Uniqueness for multi-dimensional Stefan problems with nonlinearboundary condition described by maximal monotone operators"Differential and Integral Equations. vol.15. 973-1008 (2002)
Aiki、Toyohiko:“具有由最大单调算子描述的非线性边界条件的多维 Stefan 问题的唯一性”微分方程和积分方程。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Aiki, Toyohiko, Imai, Hitoshi, Ishimura, Naoyuki, Yamada, Yoshio: "Well-posedness of one-phase Stefan problems for sublinear heat equations"Journal of Nonlinear Analysis. vol.51. 587-606 (2002)
Aiki、Toyohiko、Imai、Hitoshi、Ishimura、Naoyuki、Yamada、Yoshio:“次线性热方程的一相 Stefan 问题的适定性”非线性分析杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YAMADA Masahiro其他文献
YAMADA Masahiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YAMADA Masahiro', 18)}}的其他基金
Divided Democracies and Roles of Electoral System
分裂的民主国家和选举制度的作用
- 批准号:
17H00971 - 财政年份:2017
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Building a Platform for Documentation and Revitalization of Ryukyuan Languages
搭建琉球语言文献记载与振兴平台
- 批准号:
16K16824 - 财政年份:2016
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Cross-National Comparison in Political Ignorance and Competence among Voters and Political Culture
选民政治无知和政治能力与政治文化的跨国比较
- 批准号:
26285036 - 财政年份:2014
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Enhancement of functional expression of osteoblastic and periosteal cells by gingival fibroblasts with paracrine effect of fibroblastic growth factors
牙龈成纤维细胞通过成纤维细胞生长因子的旁分泌作用增强成骨细胞和骨膜细胞的功能表达
- 批准号:
24792114 - 财政年份:2012
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The Study on the international marriage under the globalizing society
全球化社会下的国际婚姻研究
- 批准号:
23530687 - 财政年份:2011
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Enhancement of biocompatibility of beta-tricalcium phosphate bone substitute by anti-oxidant amino acid derivative
抗氧化氨基酸衍生物增强β-磷酸三钙骨替代物的生物相容性
- 批准号:
22791903 - 财政年份:2010
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The research of the individualization of the family and it's social effect.
家庭个性化及其社会效应研究。
- 批准号:
18330102 - 财政年份:2006
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analyses of function spaces of solutions of a parabolic equation and operators on these spaces
抛物方程解的函数空间和这些空间上的运算符的分析
- 批准号:
18540168 - 财政年份:2006
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Transformation of Japanese Civil Society and the Impact to Political Process
日本公民社会的转型及其对政治进程的影响
- 批准号:
17530119 - 财政年份:2005
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of love relationship of spouses in the society of rapi
拉比社会中夫妻爱情关系研究
- 批准号:
15330096 - 财政年份:2003
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Nonlocal regularity for a geometric heat flow with fractional integral operator
具有分数积分算子的几何热流的非局部正则性
- 批准号:
21K03330 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The theory of oscillatory integral operator and its application to the Feynman path integral
振荡积分算子理论及其在费曼路径积分中的应用
- 批准号:
19540175 - 财政年份:2007
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Singular Integral Operator Algebras on Singular Spaces
数学科学:奇异空间上的奇异积分算子代数
- 批准号:
8603486 - 财政年份:1986
- 资助金额:
$ 2.11万 - 项目类别:
Continuing grant
Integral-Operator Analysis of Integrated Dielectric Waveguide Circuits
集成介质波导电路的积分算子分析
- 批准号:
8311038 - 财政年份:1983
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant














{{item.name}}会员




