Operator algebras and mathematical physics
算子代数和数学物理
基本信息
- 批准号:16340045
- 负责人:
- 金额:$ 7.94万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have studied entropy of local conformal nets of von Neumann algebras. It is defined in terms of the coefficients in the expansion of the logarithm of the trace of the "heat kernel" semigroup. In analogy with study on the asymptotic density distribution of the Laplacian eigenvalues of a manifold, we regard these coefficients as noncommutative geometric invariants of infinitely many degrees of freedom. Under a natural modularity assumption, the leading term of the entropy, noncommutative area, is proportional to the central charge and the first order correction, noncommutative Euler characteristic, is proportional to the logarithm of the global index of the net. We have also studied their relations to black hole entropy.We have made a construction of local conformal nets of von Neumann algebras analogous to the one of framed vertex operator algebras with Longo. As an example, we have obtained a local conformal net corresponding to the moonshine vertex operator algebra. We have also shown that the automorphism group of this local conformal net is indeed the Monster group, as expected.We completely classified irreducible, but possibly non-local extensions of the Virasoro net with central charge less than 1. By general theory of Longo and Rehren, this amounts to a complete classification of algebraic boundary CFT with central charge less than 1 satisfying the Haag duality.We have studied operator algebraic approach to super conformal field theory. It is known that the super Virasoro algebras have discrete series of representations for central charges less than 3/2. We have realized the super Virasoro nets of operator algebras for these cases as coset nets and obtained a classification result by studying their extensions. Together with general theory we have established, we also use the classification technique of modular invariants given by Gannon and Walton.
研究了vonNeumann代数局部共形网的熵。它是根据“热核”半群迹的对数展开式中的系数定义的。类似于流形的拉普拉斯特征值的渐近密度分布的研究,我们把这些系数看作是无限多个自由度的非对易几何不变量。在自然模块性假设下,熵的首项(非对易面积)与中心电荷成正比,一阶修正(非对易欧拉特征线)与网络全局指数的对数成正比。我们还研究了它们与黑洞熵的关系,用Longo构造了类似于框架顶点算子代数的vonNeumann代数的局部共形网。作为一个例子,我们得到了一个对应于月光顶点算子代数的局部共形网。我们还证明了这个局部共形网的自同构群确实是Monster群,正如预期的那样。我们完全分类了中心电荷小于1的Virasoro网的不可约但可能非局部的扩展。利用Longo和Rechren的一般理论,这相当于对中心荷小于1且满足Haag对偶的代数边界CFT进行了完全的分类。已知超Virasoro代数对于小于3/2的中心荷有离散的表示序列。我们将这些情形的算子代数的超Virasoro网实现为陪集网,并通过研究它们的扩张得到了一个分类结果。除了我们已经建立的一般理论外,我们还使用了Gannon和Walton给出的模不变量的分类技术。
项目成果
期刊论文数量(94)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Matrix trace inequalities related to uncertainty principle
与不确定性原理相关的矩阵迹不等式
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:N. Akiho;F. Hiai;D. Petz;F. Hiai;M. Ozawa;M. Ozawa;H. Kosaki
- 通讯作者:H. Kosaki
Operator Algebras and Conformal Field Theory
- DOI:
- 发表时间:1993
- 期刊:
- 影响因子:0
- 作者:Jϋrg Frόhlich
- 通讯作者:Jϋrg Frόhlich
Classification of two-dimensional local conformal nets with c<1 and 2-cohomology vanishing for tensor categories
张量类别中 c<1 和 2-上同调消失的二维局部共形网络的分类
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Y.Kawahigashi;R.Longo
- 通讯作者:R.Longo
Multiplier cocycles of a flow on a C*-algebra
C* 代数上流的乘子余循环
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:M.Izumi;S.Neshveyev;L.Tuset;A.Kishimoto
- 通讯作者:A.Kishimoto
Conformal field theory and operator algebra
共形场论和算子代数
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:M.Izumi;S.Neshveyev;L.Tuset;F.Hiai;Y.Kawahigashi;Y.Kawahigashi;Y.Kawahigashi;Y.Kawahigashi;Y.Kawahigashi;Y.Kawahigashi
- 通讯作者:Y.Kawahigashi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAWAHIGASHI Yasuyuki其他文献
KAWAHIGASHI Yasuyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KAWAHIGASHI Yasuyuki', 18)}}的其他基金
Synthetic Studies on Operator Algebras and Mathematical Physics
算子代数与数学物理的综合研究
- 批准号:
19204015 - 财政年份:2007
- 资助金额:
$ 7.94万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Classificaition of subfactors in operator algebra and its applications
算子代数子因子的分类及其应用
- 批准号:
10640200 - 财政年份:1998
- 资助金额:
$ 7.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
- 批准号:
2401257 - 财政年份:2024
- 资助金额:
$ 7.94万 - 项目类别:
Standard Grant
Conference: Quantum Topology, Quantum Information and connections to Mathematical Physics
会议:量子拓扑、量子信息以及与数学物理的联系
- 批准号:
2350250 - 财政年份:2024
- 资助金额:
$ 7.94万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
- 批准号:
2401258 - 财政年份:2024
- 资助金额:
$ 7.94万 - 项目类别:
Standard Grant
Collaborative Research: Conference: New England Algebraic Topology and Mathematical Physics Seminar (NEAT MAPS)
合作研究:会议:新英格兰代数拓扑与数学物理研讨会(NEAT MAPS)
- 批准号:
2329854 - 财政年份:2023
- 资助金额:
$ 7.94万 - 项目类别:
Standard Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
2247637 - 财政年份:2023
- 资助金额:
$ 7.94万 - 项目类别:
Continuing Grant
RTG: Topology, Representation Theory, and Mathematical Physics at Louisiana State University
RTG:路易斯安那州立大学拓扑学、表示论和数学物理
- 批准号:
2231492 - 财政年份:2023
- 资助金额:
$ 7.94万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: New England Algebraic Topology and Mathematical Physics Seminar (NEAT MAPS)
合作研究:会议:新英格兰代数拓扑与数学物理研讨会(NEAT MAPS)
- 批准号:
2329855 - 财政年份:2023
- 资助金额:
$ 7.94万 - 项目类别:
Standard Grant
Conference: Texas Analysis and Mathematical Physics Symposium 2024
会议:2024 年德克萨斯分析与数学物理研讨会
- 批准号:
2331234 - 财政年份:2023
- 资助金额:
$ 7.94万 - 项目类别:
Standard Grant
Geometrical structures in mathematical physics
数学物理中的几何结构
- 批准号:
RGPIN-2018-05413 - 财政年份:2022
- 资助金额:
$ 7.94万 - 项目类别:
Discovery Grants Program - Individual
Representation theoretic methods in geometry and mathematical physics
几何和数学物理中的表示理论方法
- 批准号:
RGPIN-2019-03961 - 财政年份:2022
- 资助金额:
$ 7.94万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




