3次元多様体の接触構造と葉層構造

3维流形的接触结构和叶状结构

基本信息

  • 批准号:
    07F07029
  • 负责人:
  • 金额:
    $ 1.15万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2007
  • 资助国家:
    日本
  • 起止时间:
    2007 至 2009
  • 项目状态:
    已结题

项目摘要

球面S3の標準的な接触構造のルジャンドル結び目の研究の中で、特にGopakumar-Vafa予想について研究した。予想は、Homfly多項式を含む結び目の不変量が6次元シンプテクティク多様体において、境界をラグランジュ部分多様体に持つ正則曲線の個数を数えることによって得られるというものである。与えられた結び目Kから得られる4次元球体B4の中のラグランジュ部分多様体LKで境界がKになるものを経由してこのラグランジュ部分多様体は構成されている。ここで、Kが3次元球面S3の標準的な接触構造に文寸し、ルジャンドル結び目であるという状況が自然に考えられる。Tobias Ekholm、 Ko Hondaとともに、LKの役割を担う候補者を研究した。このラグランジュ曲面が完全という条件の下で、Kに付加構造を与え、それにより曲面を区別できることを見出した。Gopakumar-Vafa予想についてRutherfordがHomfly多項式とKauffman多項式のいくつかの係数がルーリングを数えることで得られることを示している。このルーリングが4次元球体B4にはめ込まれたラグランジュ曲面として扱えることを見出し、それによって+adequateと呼ばれる結び目の最大Thurston-Bennequin数を決定する問題を解いた。正ブレイドに対してのHomfly多項式の研究の中で、ブレイドに対するHomfly多項式の係数の値のブレイドに全回転を加えたときの値の関係を見出した。
The standard contact structure of spherical surface S3 is studied in the middle and in particular in Gopakumar-Vafa. The Homfly Polynomial contains the number of regular curves in the 6-dimensional polyhedron, the state of the polyhedron, and the number of regular curves in the 6-dimensional polyhedron. The fourth dimensional sphere B4 is composed of a partial polyhedron LK and a boundary K. The standard contact structure of the three-dimensional sphere S3 is studied naturally. Tobias Ekholm, Ko Honda Under the condition of completeness, K is added to the structure, and K is added to the surface Gopakumar-Vafa gives rise to Rutherford's Homfly polynomial and Kauffman's polynomial. A solution to the problem of determining the maximum Thurston-Bennequin number of a four-dimensional sphere In the study of Homfly polynomials, the relationship between the coefficients of Homfly polynomials and the coefficients of Homfly polynomials is presented.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Isotopies of Legendrian 1-knots and Legendrian 2-tori
Legendrian 1-knot 和 Legendrian 2-tori 的同位素
Maximal Thurston-Bennequin number of +adequate links
充分链接的最大 Thurston-Bennequin 数量
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

坪井 俊其他文献

絡み目のミルナー不変量について
关于链接的米尔纳不变量
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Nakanishi;T. Shibuya;T. Tsukamoto;and A. Yasuhara;Takashi Tsuboi;Akira Yasuhara;坪井 俊;Akira Yasuhara;坪井 俊;Akira Yasuhara;Takashi Inaba;安原 晃
  • 通讯作者:
    安原 晃
The parameter rigid flows on 3-manifolds
3 流形上的参数刚性流
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Fukaya;Y.-G. Oh;H. Ohta and K.Ono;三松佳彦;三松佳彦;三松佳彦;坪井俊;Takashi Tsuboi;Yoshihiko Mitsumatsu;Kaoru Ono;Kaoru Ono;坪井俊;坪井 俊;Shigenori Matsumoto
  • 通讯作者:
    Shigenori Matsumoto
The parameter rigid flows on 3tinanifolds
3tinanifolds 上的参数刚性流
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Fukaya;Y.-G. Oh;H. Ohta and K.Ono;三松佳彦;三松佳彦;三松佳彦;坪井俊;Takashi Tsuboi;Yoshihiko Mitsumatsu;Kaoru Ono;Kaoru Ono;坪井俊;坪井 俊;Shigenori Matsumoto;Shigenori Matsumoto;Kaoru Ono;Kaoru Ono;Shigenori Matsumoto;Shigenori Matsumoto
  • 通讯作者:
    Shigenori Matsumoto
完全な群をご存知ですか
你知道完整的团体吗?
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Nakanishi;T. Shibuya;T. Tsukamoto;and A. Yasuhara;Takashi Tsuboi;Akira Yasuhara;坪井 俊
  • 通讯作者:
    坪井 俊
Mathematical Sciences and Biology
数学科学和生物学
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maruyama R;Aoki F;Toyota M;Sasaki Y;Akashi H;Mita H;Suzuki H;Akino K;Ohe-Toyota M;Maruyama Y;Tatsumi H;Imai K;Shinomura Y;Tokino T;坪井 俊
  • 通讯作者:
    坪井 俊

坪井 俊的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('坪井 俊', 18)}}的其他基金

Study on real-analytic actions
实分析动作研究
  • 批准号:
    21K18580
  • 财政年份:
    2021
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
実解析的微分同相群の研究
实解析微分同胚群的研究
  • 批准号:
    18654008
  • 财政年份:
    2006
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
葉層力学系研究のための企画調査
叶状动力系统研究规划调查
  • 批准号:
    17634002
  • 财政年份:
    2005
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
3次元多様体とその基本群の研究
3维流形及其基本群的研究
  • 批准号:
    03F00189
  • 财政年份:
    2003
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
3次元多様体とその基本群の研究
3维流形及其基本群的研究
  • 批准号:
    03F03189
  • 财政年份:
    2003
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
位相力学系の幾何学的研究
拓扑动力系统的几何研究
  • 批准号:
    01F00017
  • 财政年份:
    2001
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
円周の微分同相群と共形場の理論
周向微分同胚群与共形场论
  • 批准号:
    07210226
  • 财政年份:
    1995
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
無限群の幾何的理論の研究
无限群几何理论研究
  • 批准号:
    06640110
  • 财政年份:
    1994
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
円周の微分同相群と共形場理論の研究
周向微分同胚群与共形场论研究
  • 批准号:
    05230016
  • 财政年份:
    1993
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
多様体の無限変換群の研究
流形的无限变换群的研究
  • 批准号:
    04640022
  • 财政年份:
    1992
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了