3次元多様体とその基本群の研究

3维流形及其基本群的研究

基本信息

  • 批准号:
    03F00189
  • 负责人:
  • 金额:
    $ 0.38万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

研究の目的は3次元多様体上の種々の構造と基本群の関係を明らかにすることである。これらに関しては、3次元多様体の基本群の表示と幾何学的群論、3次元多様体の基本群のリー群への表現空間の位相などの研究が行われている。我々は、3次元多様体上の種々の構造に着目して、ラミネーションや葉層構造、3次元多様体への群作用、亜群作用のダイナミクスとの関係、3次元多様体の基本群がさまざまな形で円周の同相群や曲面の同相群に作用する様子などを特に重点的に研究する。本年度は、自由群などの無限群の代数的な取り扱いについての研究を整理し、3次元多様体の基本群との関連を調べた。ストーリングスや、ジェイコ-シャーレン-ヨハンソンによる非圧縮曲面の研究、曲面の写像類群の研究においても、写像類群の曲面の基本群への作用、サーストンによる3次元多様体の幾何学化予想についての知られている結果を整理した。また、自由群の外部自己同型群の有限部分群については、キュラーツィンマーマンにより、自由群と同じ階数を持つ有限グラフへ作用することが知られていたが、その作用が効果的である条件がワン-ツィンマーマンにより知られていた。これにより、自由群の外部自己同型群の有限部分群の最大位数の評価が得られていたが、さらに有限可換部分群に対しそれを精密に評価し、最大位数を与える外部自己同型の有限可換部分群の性質を明らかにした。それらは、位数2または4の群の直積となる。また、自由群の外部自己同型群の巡回部分群の最大位数を評価した。
The purpose of this study is to clarify the relationship between the structure of species and fundamental groups on three-dimensional polyhedra. The basic group representation of three-dimensional multi-objects and the phase representation of three-dimensional multi-objects are discussed in detail. In this paper, we focus on the structure of species on three-dimensional polyhedron, the structure of leaf layer, the group action of three-dimensional polyhedron, the relationship between group action and the basic group of three-dimensional polyhedron, and the interaction between isophase group and isophase group of curved surface. This year, the research on the algebra of free groups and infinite groups is organized, and the relationship between the fundamental groups of three-dimensional multiforms is adjusted. The research of non-compression surface, the research of image group of surface, the function of basic group of image group of surface, the geometric prediction of three-dimensional multi-object, the analysis of the results of non-compression surface and image group of surface. The finite part group of the free group has the same order as the free group. The evaluation of the maximum number of digits of a finite partial group of the outer self isotype of a free group is made clear by the precise evaluation of the maximum number of digits of a finite commutative partial group of the outer self isotype. The number of digits 2 and 4 is the direct product of the group. Also, the maximum number of digits in the touring part of the free group's external own same-type group is evaluated.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

坪井 俊其他文献

絡み目のミルナー不変量について
关于链接的米尔纳不变量
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Nakanishi;T. Shibuya;T. Tsukamoto;and A. Yasuhara;Takashi Tsuboi;Akira Yasuhara;坪井 俊;Akira Yasuhara;坪井 俊;Akira Yasuhara;Takashi Inaba;安原 晃
  • 通讯作者:
    安原 晃
The parameter rigid flows on 3-manifolds
3 流形上的参数刚性流
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Fukaya;Y.-G. Oh;H. Ohta and K.Ono;三松佳彦;三松佳彦;三松佳彦;坪井俊;Takashi Tsuboi;Yoshihiko Mitsumatsu;Kaoru Ono;Kaoru Ono;坪井俊;坪井 俊;Shigenori Matsumoto
  • 通讯作者:
    Shigenori Matsumoto
The parameter rigid flows on 3tinanifolds
3tinanifolds 上的参数刚性流
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Fukaya;Y.-G. Oh;H. Ohta and K.Ono;三松佳彦;三松佳彦;三松佳彦;坪井俊;Takashi Tsuboi;Yoshihiko Mitsumatsu;Kaoru Ono;Kaoru Ono;坪井俊;坪井 俊;Shigenori Matsumoto;Shigenori Matsumoto;Kaoru Ono;Kaoru Ono;Shigenori Matsumoto;Shigenori Matsumoto
  • 通讯作者:
    Shigenori Matsumoto
完全な群をご存知ですか
你知道完整的团体吗?
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Nakanishi;T. Shibuya;T. Tsukamoto;and A. Yasuhara;Takashi Tsuboi;Akira Yasuhara;坪井 俊
  • 通讯作者:
    坪井 俊
Mathematical Sciences and Biology
数学科学和生物学
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maruyama R;Aoki F;Toyota M;Sasaki Y;Akashi H;Mita H;Suzuki H;Akino K;Ohe-Toyota M;Maruyama Y;Tatsumi H;Imai K;Shinomura Y;Tokino T;坪井 俊
  • 通讯作者:
    坪井 俊

坪井 俊的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('坪井 俊', 18)}}的其他基金

Study on real-analytic actions
实分析动作研究
  • 批准号:
    21K18580
  • 财政年份:
    2021
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
3次元多様体の接触構造と葉層構造
3维流形的接触结构和叶状结构
  • 批准号:
    07F07029
  • 财政年份:
    2007
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
実解析的微分同相群の研究
实解析微分同胚群的研究
  • 批准号:
    18654008
  • 财政年份:
    2006
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
葉層力学系研究のための企画調査
叶状动力系统研究规划调查
  • 批准号:
    17634002
  • 财政年份:
    2005
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
3次元多様体とその基本群の研究
3维流形及其基本群的研究
  • 批准号:
    03F03189
  • 财政年份:
    2003
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
位相力学系の幾何学的研究
拓扑动力系统的几何研究
  • 批准号:
    01F00017
  • 财政年份:
    2001
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
円周の微分同相群と共形場の理論
周向微分同胚群与共形场论
  • 批准号:
    07210226
  • 财政年份:
    1995
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
無限群の幾何的理論の研究
无限群几何理论研究
  • 批准号:
    06640110
  • 财政年份:
    1994
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
円周の微分同相群と共形場理論の研究
周向微分同胚群与共形场论研究
  • 批准号:
    05230016
  • 财政年份:
    1993
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
多様体の無限変換群の研究
流形的无限变换群的研究
  • 批准号:
    04640022
  • 财政年份:
    1992
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

可換環論と離散幾何学による有限グラフに付随するトーリック環の解析
使用交换环理论和离散几何分析与有限图相关的复曲面环
  • 批准号:
    23KJ2117
  • 财政年份:
    2023
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
有限グラフに付随するGorenstein Fano凸多面体のEhrhart多項式
附加到有限图的 Gorenstein Fano 凸多面体的 Ehrhart 多项式
  • 批准号:
    11J00592
  • 财政年份:
    2011
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
有限グラフの高次連結度の計算とベッチ数列の消滅理論
有限图的高阶连通性计算和Betti序列的消失理论
  • 批准号:
    09874047
  • 财政年份:
    1997
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了