Nonlinear evolution equations and singular perturbations of variational inequalities

非线性演化方程和变分不等式的奇异摄动

基本信息

  • 批准号:
    21540173
  • 负责人:
  • 金额:
    $ 2.91万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2009
  • 资助国家:
    日本
  • 起止时间:
    2009-04-01 至 2014-03-31
  • 项目状态:
    已结题

项目摘要

Since Newton's invention, differential equations, that are equations containing unknown functions and their derivatives, have been and remain the most useful tool to describe and study mathematically various phenomina arising in physics and engineerings. From the viewpoint of abstract nonlinear evolution equations, we considered variational inequalities, that are problems of differential equations with constrains given by inequalities and imposed upon the unknown functions, and proved the existence of the singular limit of a problem containing a parameter whose limit changes the type of equation. Also in the course of the study, we proposed the concept of quasi-variational analysis by synthesizing the principal tools of nonlinear analysis: variational principles and fixed point analysis, and introduced the concept of a quasi-subdifferential operator which is a new class of abstract nonlinear operators.
自从牛顿的发明以来,微分方程,即包含未知函数及其导数的方程,一直是并且仍然是描述和研究物理和工程中出现的各种数学现象的最有用的工具。从抽象非线性演化方程的观点出发,考虑了由不等式给出约束的微分方程的变分不等式问题,并证明了一类包含参数的问题的奇异极限的存在性,该问题的极限改变了方程的类型。在研究过程中,我们综合了非线性分析的主要工具:变分原理和不动点分析,提出了拟变分分析的概念,并引入了一类新的抽象非线性算子——拟次微分算子的概念。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Global atractor of double obstacle problems in thermohydraulics
热水力学双障碍问题的全局吸引子
準変分解析
拟变分分析
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    泉池敬司;泉池佑子;大野修一;池畠優;久保雅弘
  • 通讯作者:
    久保雅弘
Quasi-subdifferential operators and quasi-subdifferential evolution equations
拟次微分算子和拟次微分演化方程
準劣微分作用素によって生成される楕円型変分不等式と仮似変分不等式
拟次微分算子生成的椭圆变分不等式和伪变分不等式
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    鍋島克輔;中村弥生;田島慎一;大野修一;Y. Fujita;村瀬勇介,久保雅弘
  • 通讯作者:
    村瀬勇介,久保雅弘
Singular perturbations for variational inequalities with time-dependent constraints
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KUBO Masahiro其他文献

KUBO Masahiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

非線形偏微分方程式における解の臨界正則性と特異性
非线性偏微分方程解的临界正则性和奇异性
  • 批准号:
    23K20803
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
楕円関数計算を併用した非線形偏微分方程式の分岐・安定性解析
使用椭圆函数计算的非线性偏微分方程的分岔和稳定性分析
  • 批准号:
    24K06814
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
変分的手法の発展と非線形偏微分方程式や凸幾何学への応用
变分法的发展及其在非线性偏微分方程和凸几何中的应用
  • 批准号:
    23K03189
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
地球流体力学に現れる非線形偏微分方程式系の数理解析
地流体动力学中非线性偏微分方程组的数学分析
  • 批准号:
    22KJ2378
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
変分問題、最適化問題と非線形偏微分方程式の総合的研究
变分问题、优化问题和非线性偏微分方程的综合研究
  • 批准号:
    22K03389
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
完全非線形偏微分方程式とその自由境界問題に対する理論と応用
完全非线性偏微分方程及其自由边界问题的理论与应用
  • 批准号:
    22K13944
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
高周波漸近解析に基づいた非線形偏微分方程式の研究
基于高频渐近分析的非线性偏微分方程研究
  • 批准号:
    21K03314
  • 财政年份:
    2021
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
特異性を伴う非線形偏微分方程式の解構造に着目した数学解析
关注奇异性非线性偏微分方程解结构的数学分析
  • 批准号:
    21K03312
  • 财政年份:
    2021
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非線形偏微分方程式における解の臨界正則性と特異性
非线性偏微分方程解的临界正则性和奇异性
  • 批准号:
    21H00991
  • 财政年份:
    2021
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
流体を記述する非線形偏微分方程式の球対称問題の数学解析
描述流体的非线性偏微分方程球对称问题的数学分析
  • 批准号:
    21K03306
  • 财政年份:
    2021
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了