Interplay between algebraic and topological closure operators, and existence of compact-like group topologies on abelian groups
代数和拓扑闭包算子之间的相互作用,以及阿贝尔群上紧致群拓扑的存在
基本信息
- 批准号:22540089
- 负责人:
- 金额:$ 2.33万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2010
- 资助国家:日本
- 起止时间:2010-04-01 至 2014-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We characterize potentially dense subsets of abelian groups G of size at most the power set of the continuum, and we show that the Markov-Zariski closure of a subset S of such a group G can be realized in some precompact group topology on G. (In particular, potential denseness of a set in G can be witnessed by some precompact group topology of G.) New metrizability criteria for compcat groups are obtained. We also provide various characterizations of Lie groups by means of controlling their zero-dimensional closed subgroups. Multiplier convergence theory of topological groups is developed.
我们刻画了大小不超过连续统幂集的阿贝尔群G的潜在密集子集,并证明了这样一个群G的子集S的Markov-Zariski闭包可以在G上的某个预紧群拓扑中实现(特别是G上的某个预紧群拓扑可以证明G上的一个集合的潜在密集)。得到了紧群的新的度量性准则。我们还通过控制李群的零维闭子群给出了李群的各种特征。提出了拓扑群的乘子收敛理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Medtrizability of compact groups via conditions on their dense subgroups
通过其稠密子群的条件实现紧群的可溶性
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Atsushi Ishii;Naoko Kamada;SeiichiKamada;Yasuhiko Kamiyama;D.Shakhmatov
- 通讯作者:D.Shakhmatov
Characterizations of Lie groups via finiteness conditions on their zero-dimensional subgroups
通过零维子群的有限性条件表征李群
- DOI:
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:D.Dikranjan;D.Shakhmatov;Shinji Fukuhara;Tsuyoshi Kato;Yasuhiko Kamiyama;T.Kato;Teruhiko Soma;Naoya Miyazaki;D. Shakhmatov;Naoko Kamada;Yasuhiko Kamiyama;Shinji Fukuhara;T.Kato;Naoya Miyazaki;Yasuhiko Kamiyama;D. Shakhmatov
- 通讯作者:D. Shakhmatov
Quasi-covexly dense and suitable sets in the arc component of a compact group
紧群弧分量中的拟凸稠密适集
- DOI:10.1002/mana.201010013
- 发表时间:2012
- 期刊:
- 影响因子:1
- 作者:D.Dikranjan;D.Shakhmatov
- 通讯作者:D.Shakhmatov
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHAKHMATOV Dmitri其他文献
SHAKHMATOV Dmitri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHAKHMATOV Dmitri', 18)}}的其他基金
Structure of compact-like abelian groups and realization of Markov density by a group topology
类紧阿贝尔群的结构及群拓扑的马尔可夫密度实现
- 批准号:
26400091 - 财政年份:2014
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
サイバーグ・ウイッテン理論の進化と4次元微分トポロジーへの応用
Seiberg-Witten理论的演变及其在四维微分拓扑中的应用
- 批准号:
22H01123 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Notion of space based on distributive lattices and its computational content
基于分布格的空间概念及其计算内容
- 批准号:
20K14352 - 财政年份:2020
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Topological study of real singularities and manifolds using fibring structures
使用纤维结构对实奇点和流形进行拓扑研究
- 批准号:
16K05140 - 财政年份:2016
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on generalized cohomology of flag varieties and Schur functions and their variants
旗簇广义上同调与Schur函数及其变体研究
- 批准号:
15K04876 - 财政年份:2015
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structure of compact-like abelian groups and realization of Markov density by a group topology
类紧阿贝尔群的结构及群拓扑的马尔可夫密度实现
- 批准号:
26400091 - 财政年份:2014
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computability, corse topology and the dimensions of metric spaces
可计算性、科西斯拓扑和度量空间的维数
- 批准号:
22540084 - 财政年份:2010
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamics of superstrings and new universality of matters
超弦动力学和物质的新普遍性
- 批准号:
22540277 - 财政年份:2010
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of the structure of the Markov-Zariski topology of a group and convergence properties of compact-like topological groups
群的Markov-Zariski拓扑结构及紧类拓扑群的收敛性研究
- 批准号:
19540092 - 财政年份:2007
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Coarse geometry and compactifications that are metric-dependent, with relation to Novikov conjecture
与诺维科夫猜想相关的度量相关的粗略几何和紧致化
- 批准号:
19540108 - 财政年份:2007
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of various groups of homeomorphisms of noncompact manifolds
非紧流形各群同胚的研究
- 批准号:
19540078 - 财政年份:2007
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




