Higher Dimensional Black Holes in String Theory
弦理论中的高维黑洞
基本信息
- 批准号:22540299
- 负责人:
- 金额:$ 2.75万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2010
- 资助国家:日本
- 起止时间:2010-04-01 至 2015-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Further restrictions on the topology of stationary black holes in five dimensions
五维静止黑洞拓扑的进一步限制
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:1.5
- 作者:S.Hollands;J.Holland;石橋明浩
- 通讯作者:石橋明浩
Black Holes in Higher Dimensions 1
高维黑洞 1
- DOI:
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Inoue;S.;石橋明浩;住吉光介,滝脇知也,松古栄夫,山田章一;石橋明浩
- 通讯作者:石橋明浩
Black Holes in de Sitter space
德西特空间中的黑洞
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Satish-Kumar;M.;et al.;Akihiro Ishibashi
- 通讯作者:Akihiro Ishibashi
Superradiant instabilities in astrophysical systems
- DOI:10.1103/physrevd.87.043513
- 发表时间:2012-12
- 期刊:
- 影响因子:5
- 作者:Helvi Witek;V. Cardoso;A. Ishibashi;U. Sperhake
- 通讯作者:Helvi Witek;V. Cardoso;A. Ishibashi;U. Sperhake
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ISHIBASHI Akihiro其他文献
ISHIBASHI Akihiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
超弦理論からの可積分系の大統一理論の構成
从弦理论构建可积系统大统一理论
- 批准号:
23K25865 - 财政年份:2024
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
超弦理論のコンパクト化から導出されるクォーク・レプトンのフレーバー構造について
弦理论紧化导出的夸克轻子风味结构
- 批准号:
24KJ0249 - 财政年份:2024
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows
非摂動的に定式化された超弦理論から創発される重力理論の解明
从非微扰公式超弦理论导出的引力理论的阐明
- 批准号:
24K07036 - 财政年份:2024
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Grand Unified Theory for Integrable Models from Superstring Theory
超弦理论中的可积模型大统一理论
- 批准号:
23H01168 - 财政年份:2023
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
現代的なアノマリーの理解の超弦理論への応用
将现代对异常的理解应用于弦理论
- 批准号:
22KJ0311 - 财政年份:2023
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows
超弦理論のトーラスコンパクト化モデルによる素粒子標準模型のフレーバー構造の再現
使用弦理论的环面紧致化模型再现基本粒子标准模型的风味结构
- 批准号:
22KJ0047 - 财政年份:2023
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Non-perturbative methods to quantum field theory and its applications to superstring theory
量子场论的非微扰方法及其在超弦理论中的应用
- 批准号:
22KJ2096 - 财政年份:2023
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows
超弦理論およびM理論に基づく重力の量子効果の解明
基于弦理论和M理论阐明引力的量子效应
- 批准号:
22K03613 - 财政年份:2022
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
量子代数曲線と対称性から探る、超共形場の理論と超弦理論
从量子代数曲线和对称性探索超共形场论和超弦理论
- 批准号:
22K03598 - 财政年份:2022
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ウィルソンラインを用いた高階スピン双対性と超弦理論の研究
利用威尔逊线研究高阶自旋对偶性和弦理论
- 批准号:
22K14042 - 财政年份:2022
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists