Research on vertex operator algebras associated with parafermion algebras

与平费米子代数相关的顶点算子代数研究

基本信息

  • 批准号:
    23540009
  • 负责人:
  • 金额:
    $ 2.91万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2011
  • 资助国家:
    日本
  • 起止时间:
    2011 至 2013
  • 项目状态:
    已结题

项目摘要

We study parafermion vertex operator algebras, which are subalgebras of integrable representations of affine Lie algebras of type A1. Using singular vectors, we classify the irreducible modules for the parafermion vertex operator algebras. Furthermore, C2-cofiniteness is established. It is proved that the dimension of Zhu's algebra coincides with that of C2 algebra. The orbifold of a lattice vertex operator algebra associated with a square root 2 times an ordinary root lattice of type An by an automorphism of order 3 is studied. We classify the irreducible modules for the orbifold. The rationality and C2-cofiniteness of the orbifold are also established.
我们研究副膜顶点操作员代数,它们是A1型仿射代数的可集成表示的亚代数。使用单数矢量,我们为副象形顶点操作员代数分类了不可约的模块。此外,还建立了C2-cofinitens。事实证明,朱代数的维度与C2代数的尺寸重合。研究了与平方根相关的晶格顶点操作员代数的2倍,由订单3的自动形态学的普通根部晶格构成了A型的普通根晶格。我们为Orbifold分类了不可还原模块。还建立了Orbifold的合理性和C2征用性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
パラフェルミオン頂点作用素代数のC2代数
类费米子顶点算子代数的C2代数
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masakazu Yamagishi;Hiroki Shimakura;山田 裕理
  • 通讯作者:
    山田 裕理
Conformal vectors in a certain orbifold
某个轨道中的共形向量
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ito Tatsuro ;Nomura Kazumasa ;Terwilliger Paul;山田裕理;Ito Tatsuro;山田裕理;Ito Tatsuro;山田裕理
  • 通讯作者:
    山田裕理
Z_k-codes and vertex operator algebras
Z_k 代码和顶点算子代数
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C.H. Lam;H. Shimakura;山田 裕理;毛利 猛;木村巌;D. Sagaki & H. Shimakura;Yasushi Mizusawa and Shinya Nishikawa;山田 裕理
  • 通讯作者:
    山田 裕理
C2-cofiniteness of parafermion vertex operator algebras
拟费米子顶点算子代数的C2-余有限性
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Allcock;Daniel; Kato;Fumiharu;Rei Inoue 他;山田 裕理
  • 通讯作者:
    山田 裕理
On parafermion vertex operator algebras
关于parafermion顶点算子代数
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Momihara Koji;Yamada Mieko;毛利 猛 ほか;山田裕理;Hirabayashi Mikihito;毛利 猛;山田裕理;野村明人;毛利 猛;山田裕理;平林幹人;H. Shimakura;毛利 猛 ほか;山田裕理
  • 通讯作者:
    山田裕理
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YAMADA Hiromichi其他文献

制限された空間での弾性薄膜の破壊
有限空间内弹性薄膜的破裂
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    ARAKAWA Tomoyuki;YAMADA Hiromichi;YAMAUCHI Hiroshi;Yoshimi Tanaka;Arakawa Tomoyuki;赤堀 裕介,増田千紘,田中 良巳
  • 通讯作者:
    赤堀 裕介,増田千紘,田中 良巳
Information of valence charge of 3d transition metal elements observed in L-emission spectra
L-发射光谱中观察到的 3d 过渡金属元素的价电荷信息
  • DOI:
    10.1093/jmicro/dfz020
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    ARAKAWA Tomoyuki;YAMADA Hiromichi;YAMAUCHI Hiroshi;峰見一輝・広瀬友紀・伊藤たかね;高橋博樹;Masami Teraichi
  • 通讯作者:
    Masami Teraichi

YAMADA Hiromichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YAMADA Hiromichi', 18)}}的其他基金

Research on code vertex operator algebras using parafermion algebras
利用平费米子代数研究码顶点算子代数
  • 批准号:
    26400040
  • 财政年份:
    2014
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on irreducible representations of W-algebras by using lattice vertex operator algebras
利用格点算子代数研究W-代数的不可约表示
  • 批准号:
    20540012
  • 财政年份:
    2008
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
W-algebras in lattice vertex operator algebras
格点算子代数中的 W 代数
  • 批准号:
    17540016
  • 财政年份:
    2005
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Orbifolds of vertex operator algebras
顶点算子代数的轨道
  • 批准号:
    15540015
  • 财政年份:
    2003
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Subalgebras of lattice vertex operator algebras
格点算子代数的子代数
  • 批准号:
    13640012
  • 财政年份:
    2001
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fundamentals on Development of Low Toxicity Mixed Solvent for Solvent Extraction
低毒溶剂萃取混合溶剂开发基础
  • 批准号:
    12640585
  • 财政年份:
    2000
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Vertex operator algebras with group action
具有群作用的顶点算子代数
  • 批准号:
    09640019
  • 财政年份:
    1997
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fundamentals of the Use of Mixed Solvents in Solvent Extraction of Metal Ions
使用混合溶剂溶剂萃取金属离子的基础知识
  • 批准号:
    06640780
  • 财政年份:
    1994
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似国自然基金

李代数的权表示
  • 批准号:
    10371120
  • 批准年份:
    2003
  • 资助金额:
    13.0 万元
  • 项目类别:
    面上项目

相似海外基金

Application of Mirror extension of vertex operator algebra using Hopf algebra theory
Hopf代数理论在顶点算子代数镜像扩展中的应用
  • 批准号:
    16F16020
  • 财政年份:
    2016
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Free field approach to solvable models associated with elliptic algebra
与椭圆代数相关的可解模型的自由场方法
  • 批准号:
    26400105
  • 财政年份:
    2014
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on code vertex operator algebras using parafermion algebras
利用平费米子代数研究码顶点算子代数
  • 批准号:
    26400040
  • 财政年份:
    2014
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New developments of vertex algebra theory
顶点代数理论的新进展
  • 批准号:
    23654006
  • 财政年份:
    2011
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Construction of Conformal field theory based on Representation theory of Vertex Operator Algebra
基于顶点算子代数表示论的共形域论构建
  • 批准号:
    22540010
  • 财政年份:
    2010
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了