マイクロヒータ組込み型ゲーティングナノポアデバイスの創製

微型加热器内置门控纳米孔装置的研制

基本信息

  • 批准号:
    14F04355
  • 负责人:
  • 金额:
    $ 0.77万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2014
  • 资助国家:
    日本
  • 起止时间:
    2014-04-25 至 2016-03-31
  • 项目状态:
    已结题

项目摘要

本研究では、マイクロヒータ付きナノポアデバイスを用いて、ヒータの局所温度制御を利用することでナノポア近傍に温度勾配を形成させて、DNAなどの検体分子・粒子のポア捕捉頻度及びポア通過速度の制御を実証することを目的とした。そこで、まずヒータ付きナノポアデバイスの作製プロセスの構築を行った。窒化膜付きシリコンウエハの片面の窒化膜を反応性イオンエッチングにより部分的に除去した。そしてKOHによるウエットエッチングにより厚さ50ナノメートルのメンブレンを形成させた。次にフォトリソグラフィー法等微細加工技術を用いてマイクロ電極パターンを作製し、続いて電子線リソグラフィー法および高周波スパッタ法により白金マイクロヒータを作製した。最後に、電子線リソグラフィーによってナノポアを描画し、反応性イオンエッチングによる窒化シリコン層の掘削を行うことで、マイクロヒータ付きナノポアを作製することに成功した。作製したデバイスを用いて標準ポリマー微粒子の検出実験を実施した。ポア設計では、細孔の厚さが直径に比して小さく作られた低アスペクト比ポア構造を応用した。この構造では、ポアに印加する電圧によって生じる電場がポアの比較的遠方にまで広がるため、DNAなどの分子・粒子の捕捉効率を向上させることが期待できる一方、粒子通過に伴い生じるイオン電流変化についての理解が不十分であった。そこで、種々の低アスペクト比を持ったポア構造を作製し、これを用いてイオン電流シグナルとポア形状との関係を系統的に調べた。その結果、低アスペクト比ポアにおけるイオン電流変化では、ポア外部のアクセス抵抗の寄与が顕著に現れるため、粒子のポア進入経路に大きく依存した電流波形が観測される、ということを明らかにすることができた。この結果は、今後のマイクロヒータ付きナノポアデバイスによる高効率なDNA検出に大きく寄与する成果である。
The purpose of this study is to determine the temperature control of the local temperature system, the temperature control system, the temperature controller, the temperature controller, the I don't know. I don't know. I don't know what to do. The asphyxiating film is used to asphyxiate the membrane on one side. The thickness of the KOH is 50%. The thickness is 50%. The thickness is 50. Micro-machining technologies such as the secondary processing technology are used in the production of high-frequency equipment, such as platinum, and so on. At the end of the day, the telephone cable was used to make sure that the car was drawn and smothered. In the end, the cable was used to make sure that the operation was successful. Make sure that the standard is used to determine the size of the particles. The design of the device, the thickness of the hole, the diameter, the diameter, the diameter. In order to improve the efficiency of molecular particle capture, the rate of molecular particle capture is not very important, and the molecular particle capture rate is very high. The rate of molecular particle capture is very high, and the molecular particle capture rate is very high. We are looking forward to the understanding of the molecular particle capture rate, and the molecular particle capture rate is very high. It is better to use the equipment to build the equipment than to use the electric current to change the shape of the system. The results are as follows: the results of the experiments, the results of the experiments, the results of the results, the results and the results. The results show that in the future, the results will be higher than that of the DNA, and the results will be sent to you.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Impact of Water-Depletion Layer on Transport in Hydrophobic Nanochannels
缺水层对疏水纳米通道中传输的影响
  • DOI:
    10.1021/acs.analchem.5b03061
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Yuhui He;Makusu Tsutsui;Xiang Shui Miao;Masateru Taniguchi
  • 通讯作者:
    Masateru Taniguchi
Particle Trajectory-Dependent Ionic Current Blockade in Low-Aspect-Ratio Pores
  • DOI:
    10.1021/acsnano.5b05906
  • 发表时间:
    2016-01-01
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Tsutsui, Makusu;He, Yuhui;Kawai, Tomoji
  • 通讯作者:
    Kawai, Tomoji
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

谷口 正輝其他文献

分子認識界面とAIテクノロジーを応用したウイルス粒子計測技術の創出
应用分子识别接口和AI技术创建病毒颗粒测量技术
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    堀口 諭吉;直野 典彦;坂本 修;武内 寛明;山岡 昇司;谷口 正輝;鷲尾 隆;宮原 裕二
  • 通讯作者:
    宮原 裕二
溶液中における浮遊生体物質の形状解析法
溶液中悬浮生物物质的形态分析方法
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    龍崎 奏;筒井 真楠;横田 一道;谷口 正輝
  • 通讯作者:
    谷口 正輝
ナノギャップデバイスによる1分子検出法によるアミノ酸解析法の開発
使用纳米间隙装置的单分子检测方法开发氨基酸分析方法
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    大城 敬人;小本 祐貴;谷口 正輝
  • 通讯作者:
    谷口 正輝
AIと物質・デバイスの融合を目指すアライアンス共同研究
旨在整合人工智能和材料/设备的联盟联合研究
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Gachter;E. Blundo;M. Yukimune;I. Zardo;F. Ishikawa;A. Polimeni;M. De Luca;谷口 正輝
  • 通讯作者:
    谷口 正輝
熱電発電応用に向けたSi基板上BaSi2薄膜
用于热电发电应用的 Si 衬底上的 BaSi2 薄膜
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Gachter;E. Blundo;M. Yukimune;I. Zardo;F. Ishikawa;A. Polimeni;M. De Luca;谷口 正輝;坂根 駿也;石部 貴史
  • 通讯作者:
    石部 貴史

谷口 正輝的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('谷口 正輝', 18)}}的其他基金

Development of Single-molecule Identification Using Quantum Interference
利用量子干涉进行单分子识别的进展
  • 批准号:
    22H00281
  • 财政年份:
    2022
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
1分子ペプチドシークエンシング法の開発
单分子肽测序方法的发展
  • 批准号:
    26246004
  • 财政年份:
    2014
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
ハイコンダクタンス単一分子接合に向けた電極―分子界面の創製
创建高电导单分子结的电极-分子界面
  • 批准号:
    20027009
  • 财政年份:
    2008
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
分子-電極接合の界面制御技術の開発
分子-电极连接界面控制技术的发展
  • 批准号:
    18041011
  • 财政年份:
    2006
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
分子デバイス配線法の開発
分子器件布线方法的开发
  • 批准号:
    18710122
  • 财政年份:
    2006
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
プログラムされた分子ワイヤの合成とナノ電極による電気伝導測定
编程分子线的合成和使用纳米电极的电导率测量
  • 批准号:
    16710101
  • 财政年份:
    2004
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
DNAを用いたナノデバイスの創製と分子操作技術の開発
利用 DNA 创建纳米器件并开发分子操纵技术
  • 批准号:
    01J00447
  • 财政年份:
    2001
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
超伝導性有機材料の分子設計と合成に関する研究
有机超导材料分子设计与合成研究
  • 批准号:
    98J09768
  • 财政年份:
    1998
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似海外基金

AI-ナノポア/マイクロポアを用いた感染性眼疾患における感染病原体の1分子検出
利用AI-纳米孔/微孔单分子检测传染性眼病中的传染性病原体
  • 批准号:
    24K12804
  • 财政年份:
    2024
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
人工膜外領域の搭載による高分解能人工設計ナノポアの構築
通过纳入人工膜外区域构建高分辨率人工设计的纳米孔
  • 批准号:
    24KJ1026
  • 财政年份:
    2024
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
イオン性ポリマー修飾積層ナノポアを用いた少数分子反応解析法の創成
利用离子聚合物修饰的堆叠纳米孔创建小分子反应分析方法
  • 批准号:
    24K01511
  • 财政年份:
    2024
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
交流型ナノポア計測における諸特性の解明と理論基盤の確立
阐明AC纳米孔测量的各种特性并建立理论基础
  • 批准号:
    23K26112
  • 财政年份:
    2024
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
固体ナノポアを用いた単一生体粒子マルチオミクス測定法の創成
利用固态纳米孔创建单个生物颗粒多组学测量方法
  • 批准号:
    23K23194
  • 财政年份:
    2024
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study of protein folding pathway using laser fabricated nanopore
利用激光制造纳米孔研究蛋白质折叠途径
  • 批准号:
    23K13642
  • 财政年份:
    2023
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ナノポア計測とDNAコンピューティング技術による超低濃度microRNAの検出
利用纳米孔测量和DNA计算技术检测超低浓度microRNA
  • 批准号:
    22KJ1231
  • 财政年份:
    2023
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
選択的分子捕捉と信号伝達の両者を担う革新的ナノポア配位高分子シートセンサの創製
创建创新的纳米孔配位聚合物片传感器,负责选择性分子捕获和信号传输
  • 批准号:
    23K17865
  • 财政年份:
    2023
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
露出した金属イオンが高密度に集積した一次元ナノポアの構築
具有高密度暴露金属离子的一维纳米孔的构建
  • 批准号:
    23K19259
  • 财政年份:
    2023
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
ナノポア細菌叢解析による矯正治療中の医原性障害予防システム構築と個別化医療の実現
利用纳米孔菌群分析构建正畸治疗期间预防医源性疾病的系统并实现个体化医疗
  • 批准号:
    23K16204
  • 财政年份:
    2023
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了