パンルヴェ方程式を中心とした可積分系の研究

以Painlevé方程为中心的可积系统研究

基本信息

  • 批准号:
    22K03348
  • 负责人:
  • 金额:
    $ 2.25万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2022
  • 资助国家:
    日本
  • 起止时间:
    2022-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

東京大学の細井竜也氏と準備していた共著論文が京大数理研講究録別冊にアクセプトされた.この内容について報告する.リゾヴィーらによって得られていた第6パンルヴェ方程式の解の級数表示は,級数の収束も分からないままであったが,2021年の細井氏の修士論文で,級数の(原点近傍における)収束が示された.細井氏の結果は,パンルヴェ方程式に限らず,函数の満たす斉次2次微分方程式の特異点における最低次の項の形がある条件を満たすという仮定の下に示されたものであった.この形の方程式を,特異点において H 型であると呼ぶことにする.我々は,t = 0, 1, 無限大,のみを 特異点に持ち,そのいずれもが H 型である4階斉次2次微分方程式の形を(簡単なある仮定の下) 決定した.これは第6パンルヴェ方程式を含むものである.この結果については,新しい微分方程式のクラスを提案するものであり,今後の発展についても期待できるものであると思う.ここで提案された方程式が,パンルヴェ性などのよい性質を持つものなのかということには興味がある.線型微分方程式の変形理論との関係も同様である.また,第6パンルヴェ方程式の新しい特徴づけにもなると考えられる.今後の拡張としては,特異点の数を増やした場合,特異点を合流した場合などの問題が考えられる.そのほか,線型差分方程式の積分変換に関する理論についてや,4次元離散力学系についての具体例の計算など,考察を続けている.
A co-authored paper on the preparation of the University of Tokyo's Hosei Tatsuya. The content of this report is not available. The series expression of the solution of the equation is the series expression of the solution of the equation. The series expression is the series expression of the solution of the equation. The series expression is the series expression of the solution of the equation. The series expression is the series expression of the solution of the equation. Hosei's result is that the equation is limited, and the function is expressed in terms of the lowest order of the differential equation. The equation of this type is H type. I, t = 0, 1, infinite, and special points are held, and all of them are determined by the form of the H-type fourth-order quadratic differential equation. The sixth equation contains the following: The result of this is that the new differential equation is proposed and expected in the future. This proposal is based on the equation, and the property of the property is maintained. Linear differential equations and their relations. A new characteristic of the equation in the sixth part of the equation is given below. In the future, the number of unique points will increase, and the number of unique points will increase. The integral transformation of linear difference equations is related to the theory, and the calculation of concrete examples of four-dimensional discrete mechanics is investigated.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Painleve Equations: From Classical to Modern Analysis
Painleve 方程:从经典分析到现代分析
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

坂井 秀隆其他文献

Rational surfaces associated with affine root systems and geometry of the Painlevé equations
与仿射根系和 Painlevé 方程几何相关的有理曲面
  • DOI:
    10.11501/3156115
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    坂井 秀隆
  • 通讯作者:
    坂井 秀隆

坂井 秀隆的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('坂井 秀隆', 18)}}的其他基金

高次元離散可積分系とその幾何学の探求
高维离散可积系统及其几何的探索
  • 批准号:
    21F20778
  • 财政年份:
    2021
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
パンルヴェ系を中心とした可積分系の研究
以Painlevé系统为重点的可积系统研究
  • 批准号:
    18740087
  • 财政年份:
    2006
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
パンルヴェ系を中心とした可積分系の研究
以Painlevé系统为重点的可积系统研究
  • 批准号:
    15740099
  • 财政年份:
    2003
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
パンルヴェ系を中心とした可積分系の研究
以Painlevé系统为重点的可积系统研究
  • 批准号:
    13740110
  • 财政年份:
    2001
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
可積分系の研究一差分系、パンルヴェ方程式を中心として
可积系统研究——重点关注微分系统和Painlevé方程
  • 批准号:
    98J09423
  • 财政年份:
    1998
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似海外基金

アフィンLaumon空間上の非定常差分方程式の差分青本理論
仿射Laumon空间上非定常差分方程的差分Aomoto理论
  • 批准号:
    24K06753
  • 财政年份:
    2024
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非線形偏差分方程式と非線形関数方程式の可積分性・特異点とエントロピーの観点から
从非线性微分微分方程和非线性函数方程的可积性、奇异性和熵的角度
  • 批准号:
    23K22401
  • 财政年份:
    2024
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
差分方程式および微分差分方程式系の完全WKB解析
差分方程和微分-差分方程组的完整 WKB 分析
  • 批准号:
    24K06767
  • 财政年份:
    2024
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ワイル群不変な有理・三角・楕円多変数超幾何関数の差分方程式系
有理、三角形和椭圆多元超几何函数的 Weyl 群不变差分方程组
  • 批准号:
    23K03153
  • 财政年份:
    2023
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
特異点の手法による差分方程式の可積分性判定
使用奇点法确定差分方程的可积性
  • 批准号:
    23K12996
  • 财政年份:
    2023
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
差分方程式の解の与える微分超越性への影響について
论微分方程的解对微分超越性的影响
  • 批准号:
    23K03154
  • 财政年份:
    2023
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
平坦構造の一般化と線形微分差分方程式
平面结构和线性微分差分方程的推广
  • 批准号:
    21K03313
  • 财政年份:
    2021
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
差分方程式の概周期族解の存在とCOVID-19後遺症による機能性EDモデルの研究
基于差分方程近似周期群解存在性的泛函ED模型研究及COVID-19后遗症
  • 批准号:
    21K03318
  • 财政年份:
    2021
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
量子トロイダル代数に付随する差分方程式とハイパーケーラー商
与量子环形代数相关的差分方程和超kähler商
  • 批准号:
    18K03274
  • 财政年份:
    2018
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
格子の理論を用いた可積分な微差分方程式の解の性質とその応用に関する研究
利用格理论研究可积微分方程解的性质及其应用
  • 批准号:
    17J00092
  • 财政年份:
    2017
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了