INTERIOR-POlNT METHODS FOR OPTIMIZATION PROBLEMS IN SOCIAL SYSTEMS

社会系统优化问题的内点方法

基本信息

  • 批准号:
    08680478
  • 负责人:
  • 金额:
    $ 1.73万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1996
  • 资助国家:
    日本
  • 起止时间:
    1996 至 1998
  • 项目状态:
    已结题

项目摘要

We have performed a basic research on the interior point methods for solving optimization problems in social systems. In this year, our research mainly devoted to the development of interior point methods for linear programming and semidefinite programming, and devoted to the analysis of the global convergence and the local convergence of these methods.Most of the optimization problems iii social systems could be modeled as mathematical programming problems. The linear programming problem is the most fundamental mathematical programming problem. We performed two important research on the interior-point methods for linear programming. Firstly, in order to speed up the local convergence of interior point methods, we investigated an algorithm which trace the central path in high degree. As a result of this research, we proposed a high order infeasible interior point algorithm. Secondly, we are interested in the problem to get an initial interior point to perform an algorithm, For this purpose, we investigated two self-dual systems for linear programming, which have trivial initial points.We studied not only linear programming, but also convex programming, semidefinite programming, and semi-infinite programming. There are many search directions in interior-point methods for solving semidefinite programming problems. We investigated a self-dual subfamily of such directions. We also studied interior-point methods for solving linear and quadratic semi-infinite programming problems and proposed a dual-parameterization algorithm for convex semi-infinite programming.
对求解社会系统最优化问题的内点方法进行了基础性研究。本年度主要研究线性规划和半定规划的内点方法,并分析了这些方法的全局收敛性和局部收敛性,社会系统中的大多数优化问题都可以建模为数学规划问题。线性规划问题是最基本的数学规划问题。本文对线性规划的邻点法进行了两个重要的研究。首先,为了加快内点法的局部收敛速度,研究了一种高度跟踪中心路径的算法。作为研究的结果,我们提出了一个高阶不可行内点算法。其次,我们对求解初始内点的问题感兴趣,为此,我们研究了两个具有平凡初始点的线性规划的自对偶系统,不仅研究了线性规划,而且研究了凸规划、半定规划和半无限规划。求解半定规划问题的邻域点法有多种搜索方向。我们研究了这种方向的自对偶子族。研究了求解线性和二次半无限规划问题的邻域点法,提出了求解凸半无限规划问题的一个双参数化算法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
土谷隆: "半正定値計画問題に対する主双対内点法の自己双対な探索方向族について" 統計数理. 46・2. 283-296 (1998)
Takashi Tsuchiya:“关于半定规划问题的原对偶内点法的自对偶搜索方向族”,统计数学46・2(1998)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
土 谷 隆: "半正定値計画問題に対する主双対内点法の自己双対な探索方向族について" 統計数理. 46・2. 283-396 (1998)
Takashi Tsuchiya:“关于半定规划问题的原对偶内点法的自对偶搜索方向族”统计数学46・2(1998)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Tsuchiya: "A Scaling Invariant Self-Dual Subfamily of the Monteiro-Tsuchiya family of Search Directions for the Primal-Dual Algorithms for Semidefinite Programming" Proceedings of the Institute of Statistical Mathematics. Vol.46, No.2. 283-296 (1998)
T.Tsuchiya:“半定规划原始对偶算法搜索方向的 Monteiro-Tsuchiya 系列的缩放不变自对偶子族”统计数学研究所论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
J.Stoes,M.Wechs,S.Mizuno: "High Order Infeasible-Interior-Point Methods for Linear Programming" Mathematics of Operations Research. 23・4. 832-862 (1998)
J. Stoes、M. Wechs、S. Mizuno:“线性规划的高阶不可行内点方法”运筹学数学 832-862 (1998)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Tsuchiya and R.Monteiro: "Polynomial Convergence of a New Family of Prmal-Ducl Algosithms for SDP" 最適化:モデリングとアルゴリズム. 11. 118-145 (1997)
T.Tsuchiya 和 R.Monteiro:“SDP 新系列 Prmal-Ducl 算法的多项式收敛”优化:建模和算法 11. 118-145 (1997)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MIZUNO Shinji其他文献

MIZUNO Shinji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MIZUNO Shinji', 18)}}的其他基金

Development of Digital Technologies for Museums Based on Virtual Experiences of Traditional Handicraft Methods
基于传统手工艺虚拟体验的博物馆数字化技术发展
  • 批准号:
    23500139
  • 财政年份:
    2011
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Interactive CG creation System based on Real Arts and Crafts Techniques
基于真实工艺美术技术的互动CG创作系统
  • 批准号:
    20500091
  • 财政年份:
    2008
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research and development of the advanced expert mathematical library for the information network society
信息网络社会高级专家数学库的研发
  • 批准号:
    20241038
  • 财政年份:
    2008
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Research and development of new IT models for financial risk management.
研究和开发金融风险管理新的IT模型。
  • 批准号:
    16201033
  • 财政年份:
    2004
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Efficient Algorithms for Large Optimization Problems
大型优化问题的高效算法
  • 批准号:
    12680433
  • 财政年份:
    2000
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Quantitative Evaluation of the Impact of Food Production on Social System Transformation: Archaeozoological Approach
粮食生产对社会系统转型影响的定量评估:考古动物学方法
  • 批准号:
    23K00952
  • 财政年份:
    2023
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: SaTC: CORE: Small: SOCIAL: System-on-Chip Information Flow Validation under Asynchronous Events
协作研究:SaTC:CORE:小型:SOCIAL:异步事件下的片上系统信息流验证
  • 批准号:
    2223046
  • 财政年份:
    2022
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: SOCIAL: System-on-Chip Information Flow Validation under Asynchronous Events
协作研究:SaTC:CORE:小型:SOCIAL:异步事件下的片上系统信息流验证
  • 批准号:
    2223045
  • 财政年份:
    2022
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Standard Grant
Animals, ecology, and the rural social system: pastoralists and their Cistercian neighbours in upland southern France, 1100-1350
动物、生态和农村社会体系:法国南部高地的牧民和他们的西多会邻居,1100-1350 年
  • 批准号:
    2732985
  • 财政年份:
    2022
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Studentship
Comparative study on social system and policy towards regeneration of agri-food system from local perspectives in post-Corona era
后电晕时代地方视角下农业食品体系再生的社会制度与政策比较研究
  • 批准号:
    21H04745
  • 财政年份:
    2021
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Designing the social system where Art Thinking is exploited: exploring Artists in Residence in the UK and Japan
设计利用艺术思维的社会系统:探索英国和日本的驻地艺术家
  • 批准号:
    21K18345
  • 财政年份:
    2021
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Design for a sustainable social system employed biomass
采用生物质的可持续社会系统设计
  • 批准号:
    20K01681
  • 财政年份:
    2020
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Sociological Research on How Persons with Disabilities and Persons without Disabilities Can Build Relationship : Focusing on Experiences of Individuals, Social System and Social Movements
残疾人与非残疾人如何建立关系的社会学研究:关注个人经验、社会制度和社会运动
  • 批准号:
    19J12630
  • 财政年份:
    2019
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The role of "Hometown" as a cultural and social system playing in the migration and network-making of Chinese overseas from Fuqing
“故乡”作为文化社会系统在福清华侨迁徙和网络构建中的作用
  • 批准号:
    19K01212
  • 财政年份:
    2019
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: NRT: Cyber-Physical-Social System for Understanding and Thwarting the Illicit Economy
合作研究:NRT:理解和阻止非法经济的网络物理社会系统
  • 批准号:
    1828302
  • 财政年份:
    2018
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了