The contribution of novel cytidine deaminase regulatory systems to bacterial evolution
新型胞苷脱氨酶调节系统对细菌进化的贡献
基本信息
- 批准号:10179834
- 负责人:
- 金额:$ 59.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-05 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressBacteriaBacterial GenomeBacterial PhysiologyBacteriophagesBindingBiochemicalBiochemistryBioinformaticsBiologicalBiological ProcessBiologyCellsCellular biologyCessation of lifeCollaborationsCyclic GMPCytidine DeaminaseDefense MechanismsDisciplineDissectionEnterobacter cloacaeEnzymesEscherichia coliEukaryotaEvolutionFilamentGene ExpressionGenesGeneticGenetic studyGenomeGenomic IslandsHomeostasisIn VitroInfectionIslandLifeMicroscopyMutationN-terminalNamesNucleic AcidsNucleotidesOrganismOrthologous GenePeptidesPhosphotransferasesPhysiologyPlayProtein BiochemistryProteinsProteobacteriaPublicationsRecording of previous eventsRegulationResearchRoleSignal TransductionStructural ProteinStructureSystemTertiary Protein StructureTestingToxic effectTrans-ActivatorsTreesUntranslated RNAUrsidae FamilyVibrioVibrio choleraeViralVirus DiseasesWaterbaseclinically relevantdeoxycytidine deaminaseexperienceexperimental studygene functioninhibitor/antagonistmutantnoveloverexpressionpandemic diseasepathogenic bacteriapreventprotein complexsmall moleculestructural biologytoolvirtual
项目摘要
Project Summary: The current and 7th pandemic of Vibrio cholerae caused by the El Tor biotype encodes two
novel genetic islands called the Vibrio Seventh Pandemic Islands 1 and 2 (VSP-1 and VSP-2). Although
acquisition of these islands is proposed to be key to initiation of the 7th pandemic, the function of these genes
remains virtually unknown. The over-arching purpose of this proposal is to understand the function and regulation
of a novel bacterial cytidine deaminase (CDA) regulatory system that we have discovered is encoded on VSP-1
and in many other Proteobacteria. This new CDA regulatory system consists of the multi-domain protein we
named DcdV (deoxycytidine deaminase Vibrio) and its inhibitor named DifV (DcdV inhibitory factor Vibrio)
encoded in a 222 NT region 5’ of dcdV. These genes were first identified as our bioinformatic analysis indicated
that they significantly cooccur in bacterial genomes with the VSP-1 encoded DncV/CapV cyclic GMP-AMP phage
defense system that we previously discovered. Consistent with a potential role of DcdV-DifV to regulate phage
defense, expressing DcdV in the absence of difV causes cell filamentation and disruption of dNTP pools in V.
cholerae and Escherichia coli. Deoxycytidine deaminases (DCD) enzymes play critical roles in maintaining
nucleotide homeostasis, hypermutation, and viral defense in both bacteria and eukaryotes, but in numerous
respects, DcdV and its orthologs are quite different from any other previously studied DCDs. For example, all
previously described DCDs are single domain proteins, while DcdV has an associated N-terminal nucleotide
kinase (NK) domain that our genetic studies show is essential for DcdV activity. Furthermore, other DCDs are
negatively regulated by allosteric binding of dTTP, while DcdV is instead regulated by DifV. For a litany of reasons
based on preliminary studies described in the proposal, we hypothesize that activation of DcdV via inhibition of
DifV skews the cellular nucleotide pool. More specifically, DcdV drives an increase in dUTP concentration and
decrease in dCTP and dTTP concentrations as a two-fold phage defense mechanism, i.e., preventing
accumulation of dNTP substrates for phage genome replication and promoting dUMP incorporation into phage
genomes. Exactly how DcdV functions mechanistically, how this function is inhibited by DifV, and the contribution
of this system to bacterial survival, for example, as part of a phage defense mechanism remains to be elucidated.
We propose to study the mechanistic basis of DcdV function, its regulation by DifV, and the biological contribution
of this newly discovered regulatory system to bacterial physiology in V. cholerae and other bacteria. These aims
will be pursued at the cellular and atomic level using the tools of cell biology, genetics, biochemistry, microscopy,
and structural biology. By defining the mechanism and function of this novel CDA regulatory system we expect
that our research will have a broad impact in multiple disciplines across both prokaryotic and eukaryotic fields.
项目概述:目前和第7次霍乱弧菌大流行引起的埃尔托生物型编码两个
新的遗传岛称为弧菌第七大流行岛1和2(VSP-1和VSP-2)。虽然
这些岛的获得被认为是引发第七次大流行的关键,这些基因的功能
仍然是个未知数本建议的主要目的是了解其功能和调节
我们发现一种新的细菌胞苷脱氨酶(CDA)调节系统编码在VSP-1上
和许多其他变形菌。这种新的CDA调节系统由多结构域蛋白组成,
DcdV(脱氧胞苷脱氨酶弧菌)及其抑制剂DifV(DcdV抑制因子弧菌)
编码在dcdV的5'端的222 NT区。我们的生物信息学分析表明,
它们与VSP-1编码的DncV/CapV环状GMP-AMP噬菌体在细菌基因组中显著共存
我们之前发现的防御系统与DcdV-DifV调节噬菌体的潜在作用一致
防御,在difV不存在的情况下表达DcdV导致细胞表达和V中dNTP池的破坏。
霍乱弧菌和大肠杆菌。脱氧胞苷脱氨酶(DCD)酶在维持
核苷酸稳态,超突变和病毒防御在细菌和真核生物,但在许多
在某些方面,DcdV及其直系同源物与任何其他先前研究的DCD都有很大不同。例如所有
先前描述的DCD是单结构域蛋白,而DcdV具有相关的N-末端核苷酸
我们遗传学研究表明,NK结构域对于DcdV活性是必需的。此外,其他DCD
DcdV受dTTP的变构结合负调控,而DcdV则受DifV调控。出于一系列的原因
根据提案中描述的初步研究,我们假设通过抑制DcdV来激活DcdV。
DifV使细胞核苷酸库偏斜。更具体地,DcdV驱动dUTP浓度的增加,
dCTP和dTTP浓度的降低作为双重噬菌体防御机制,即,防止
积累用于噬菌体基因组复制的dNTP底物并促进dUMP掺入噬菌体
基因组DcdV究竟是如何发挥作用的,DifV是如何抑制这种功能的,
例如,作为噬菌体防御机制的一部分,该系统对细菌存活的影响仍有待阐明。
我们建议研究DcdV功能的机制基础,DifV对其的调节,以及DcdV的生物学贡献。
这种新发现的调节系统对霍乱弧菌和其他细菌的生理学的影响。这些目标
将在细胞和原子水平上使用细胞生物学,遗传学,生物化学,显微镜,
和结构生物学。通过定义这种新的CDA调节系统的机制和功能,我们期望
我们的研究将在原核生物和真核生物领域的多个学科中产生广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew B Neiditch其他文献
Matthew B Neiditch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew B Neiditch', 18)}}的其他基金
The contribution of novel cytidine deaminase regulatory systems to bacterial evolution
新型胞苷脱氨酶调节系统对细菌进化的贡献
- 批准号:
10553666 - 财政年份:2021
- 资助金额:
$ 59.37万 - 项目类别:
The contribution of novel cytidine deaminase regulatory systems to bacterial evolution
新型胞苷脱氨酶调节系统对细菌进化的贡献
- 批准号:
10339467 - 财政年份:2021
- 资助金额:
$ 59.37万 - 项目类别:
X-ray Crystallographic Analysis of Diguanylate Cyclase Enzyme-Inhibitor Complexes
二鸟苷酸环化酶抑制剂复合物的 X 射线晶体分析
- 批准号:
8582834 - 财政年份:2013
- 资助金额:
$ 59.37万 - 项目类别:
X-ray Crystallographic Analysis of Diguanylate Cyclase Enzyme-Inhibitor Complexes
二鸟苷酸环化酶抑制剂复合物的 X 射线晶体分析
- 批准号:
8712661 - 财政年份:2013
- 资助金额:
$ 59.37万 - 项目类别:
Structural Biology of Multifunctional Bacterial Phosphatases
多功能细菌磷酸酶的结构生物学
- 批准号:
7631902 - 财政年份:2009
- 资助金额:
$ 59.37万 - 项目类别:
Structural Biology of Multifunctional Bacterial Phosphatases
多功能细菌磷酸酶的结构生物学
- 批准号:
8711660 - 财政年份:2009
- 资助金额:
$ 59.37万 - 项目类别:
Structural Biology of Multifunctional Bacterial Phosphatases
多功能细菌磷酸酶的结构生物学
- 批准号:
8117171 - 财政年份:2009
- 资助金额:
$ 59.37万 - 项目类别:
相似国自然基金
Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
- 批准号:81971557
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
- 批准号:51678163
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Cell Wall Formation in Rod Shaped Bacteria
杆状细菌细胞壁的形成
- 批准号:
BB/Y003187/1 - 财政年份:2024
- 资助金额:
$ 59.37万 - 项目类别:
Research Grant
Did light dictate ancient diversification of phylogeny and cell structure in the domain bacteria?
光是否决定了细菌领域的古代系统发育和细胞结构的多样化?
- 批准号:
24H00582 - 财政年份:2024
- 资助金额:
$ 59.37万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Conference: Symposium on the Immune System of Bacteria
会议:细菌免疫系统研讨会
- 批准号:
2349218 - 财政年份:2024
- 资助金额:
$ 59.37万 - 项目类别:
Standard Grant
DNA replication dynamics in living bacteria
活细菌中的 DNA 复制动态
- 批准号:
23K25843 - 财政年份:2024
- 资助金额:
$ 59.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 59.37万 - 项目类别:
Research Grant
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 59.37万 - 项目类别:
Fellowship
Assembly of the matrix that supports bacteria living in biofilms
支持生活在生物膜中的细菌的基质的组装
- 批准号:
2468773 - 财政年份:2024
- 资助金额:
$ 59.37万 - 项目类别:
Studentship
Manipulating two-component systems to activate cryptic antibiotic pathways in filamentous actinomycete bacteria
操纵双组分系统激活丝状放线菌中的神秘抗生素途径
- 批准号:
BB/Y005724/1 - 财政年份:2024
- 资助金额:
$ 59.37万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 59.37万 - 项目类别:
Research Grant
CAREER: Interfacial behavior of motile bacteria at structured liquid crystal interfaces
职业:运动细菌在结构化液晶界面的界面行为
- 批准号:
2338880 - 财政年份:2024
- 资助金额:
$ 59.37万 - 项目类别:
Continuing Grant