The contribution of novel cytidine deaminase regulatory systems to bacterial evolution
新型胞苷脱氨酶调节系统对细菌进化的贡献
基本信息
- 批准号:10339467
- 负责人:
- 金额:$ 57.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-05 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressBacteriaBacterial GenomeBacterial PhysiologyBacteriophagesBindingBiochemicalBiochemistryBioinformaticsBiologicalBiological ProcessBiologyCellsCellular biologyCessation of lifeCollaborationsCyclic GMPCytidine DeaminaseDefense MechanismsDisciplineDissectionEnterobacter cloacaeEnzymesEscherichia coliEukaryotaEvolutionFilamentGene ExpressionGenesGeneticGenetic studyGenomeGenomic IslandsHomeostasisIn VitroInfectionIslandLifeMicroscopyMutationN-terminalNamesNucleic AcidsNucleotidesOrganismOrthologous GenePeptidesPhosphotransferasesPhysiologyPlayProtein BiochemistryProteinsProteobacteriaPublicationsRecording of previous eventsRegulationResearchRoleSignal TransductionStructural ProteinStructureSystemTertiary Protein StructureTestingToxic effectTrans-ActivatorsTreesUntranslated RNAUrsidae FamilyVibrioVibrio choleraeViralVirus DiseasesWaterbaseclinically relevantdeoxycytidine deaminaseexperienceexperimental studygene functioninhibitormutantnoveloverexpressionpandemic diseasepathogenic bacteriapreventprotein complexsmall moleculestructural biologytoolvirtual
项目摘要
Project Summary: The current and 7th pandemic of Vibrio cholerae caused by the El Tor biotype encodes two
novel genetic islands called the Vibrio Seventh Pandemic Islands 1 and 2 (VSP-1 and VSP-2). Although
acquisition of these islands is proposed to be key to initiation of the 7th pandemic, the function of these genes
remains virtually unknown. The over-arching purpose of this proposal is to understand the function and regulation
of a novel bacterial cytidine deaminase (CDA) regulatory system that we have discovered is encoded on VSP-1
and in many other Proteobacteria. This new CDA regulatory system consists of the multi-domain protein we
named DcdV (deoxycytidine deaminase Vibrio) and its inhibitor named DifV (DcdV inhibitory factor Vibrio)
encoded in a 222 NT region 5’ of dcdV. These genes were first identified as our bioinformatic analysis indicated
that they significantly cooccur in bacterial genomes with the VSP-1 encoded DncV/CapV cyclic GMP-AMP phage
defense system that we previously discovered. Consistent with a potential role of DcdV-DifV to regulate phage
defense, expressing DcdV in the absence of difV causes cell filamentation and disruption of dNTP pools in V.
cholerae and Escherichia coli. Deoxycytidine deaminases (DCD) enzymes play critical roles in maintaining
nucleotide homeostasis, hypermutation, and viral defense in both bacteria and eukaryotes, but in numerous
respects, DcdV and its orthologs are quite different from any other previously studied DCDs. For example, all
previously described DCDs are single domain proteins, while DcdV has an associated N-terminal nucleotide
kinase (NK) domain that our genetic studies show is essential for DcdV activity. Furthermore, other DCDs are
negatively regulated by allosteric binding of dTTP, while DcdV is instead regulated by DifV. For a litany of reasons
based on preliminary studies described in the proposal, we hypothesize that activation of DcdV via inhibition of
DifV skews the cellular nucleotide pool. More specifically, DcdV drives an increase in dUTP concentration and
decrease in dCTP and dTTP concentrations as a two-fold phage defense mechanism, i.e., preventing
accumulation of dNTP substrates for phage genome replication and promoting dUMP incorporation into phage
genomes. Exactly how DcdV functions mechanistically, how this function is inhibited by DifV, and the contribution
of this system to bacterial survival, for example, as part of a phage defense mechanism remains to be elucidated.
We propose to study the mechanistic basis of DcdV function, its regulation by DifV, and the biological contribution
of this newly discovered regulatory system to bacterial physiology in V. cholerae and other bacteria. These aims
will be pursued at the cellular and atomic level using the tools of cell biology, genetics, biochemistry, microscopy,
and structural biology. By defining the mechanism and function of this novel CDA regulatory system we expect
that our research will have a broad impact in multiple disciplines across both prokaryotic and eukaryotic fields.
项目摘要:目前和第七次由El Tor生物型引起的霍乱弧菌大流行编码两种
新的遗传岛称为弧菌第七大流行岛1和2(VSP-1和VSP-2)。虽然
这些岛屿的获取被认为是启动第7次大流行的关键,这些基因的功能
几乎仍然是未知的。这项建议的总体目的是了解其功能和规则。
我们发现的一种新的细菌胞苷脱氨酶(CDA)调控系统编码在VSP-1上
在许多其他变形杆菌中。这个新的CDA调控系统由多结构域蛋白WE组成
命名为DcdV(脱氧胞苷脱氨酶弧菌)及其抑制物命名为DifV(DcdV抑制因子弧菌)
编码在DCDV的222个核苷酸的5‘区中。这些基因首次被确认为我们的生物信息学分析表明
它们显著地与VSP-1编码的DncV/CapV环状GMP-AMP噬菌体共存于细菌基因组中
我们之前发现的防御系统。与DcdV-DifV调节噬菌体的潜在作用一致
防御,在没有difV的情况下表达DcdV会导致细胞丝状化和dNTP池的破坏。
霍乱和大肠埃希氏菌。脱氧胞苷脱氨酶(DCD)在维持
在细菌和真核生物中,核苷酸动态平衡、超突变和病毒防御,但在许多
方面,DcdV及其同源基因与以前研究的任何DCDs都有很大的不同。例如,所有
以前描述的DCDs是单域蛋白,而DcdV有一个相关的N-末端核苷酸
我们的遗传学研究表明,激酶(NK)结构域对DcdV的活性是必不可少的。此外,其他DCD是
DTTP受变构结合负性调节,而DcdV受DifV调节。出于一系列原因
根据提案中描述的初步研究,我们假设DcdV通过抑制
DifV扭曲了细胞的核苷酸池。更具体地说,DcdV推动dUTP浓度的增加和
降低dCTP和dTTP浓度作为一种双重的噬菌体防御机制,即防止
噬菌体基因组复制dNTP底物的积累和促进Dump掺入噬菌体的研究
基因组。DcdV到底是如何发挥作用的,DifV是如何抑制这一功能的,以及DifV的贡献
以细菌存活为例,该系统作为噬菌体防御机制的一部分还有待阐明。
我们建议研究DcdV功能的机制基础,DifV对DcdV的调节以及生物贡献
这一新发现的霍乱弧菌和其他细菌的细菌生理调控系统。这些目标
将利用细胞生物学、遗传学、生物化学、显微镜、
和结构生物学。通过界定这一新型CDA监管体系的机制和功能,我们期待
我们的研究将在原核生物和真核生物领域的多个学科中产生广泛影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew B Neiditch其他文献
Matthew B Neiditch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew B Neiditch', 18)}}的其他基金
The contribution of novel cytidine deaminase regulatory systems to bacterial evolution
新型胞苷脱氨酶调节系统对细菌进化的贡献
- 批准号:
10553666 - 财政年份:2021
- 资助金额:
$ 57.87万 - 项目类别:
The contribution of novel cytidine deaminase regulatory systems to bacterial evolution
新型胞苷脱氨酶调节系统对细菌进化的贡献
- 批准号:
10179834 - 财政年份:2021
- 资助金额:
$ 57.87万 - 项目类别:
X-ray Crystallographic Analysis of Diguanylate Cyclase Enzyme-Inhibitor Complexes
二鸟苷酸环化酶抑制剂复合物的 X 射线晶体分析
- 批准号:
8582834 - 财政年份:2013
- 资助金额:
$ 57.87万 - 项目类别:
X-ray Crystallographic Analysis of Diguanylate Cyclase Enzyme-Inhibitor Complexes
二鸟苷酸环化酶抑制剂复合物的 X 射线晶体分析
- 批准号:
8712661 - 财政年份:2013
- 资助金额:
$ 57.87万 - 项目类别:
Structural Biology of Multifunctional Bacterial Phosphatases
多功能细菌磷酸酶的结构生物学
- 批准号:
7631902 - 财政年份:2009
- 资助金额:
$ 57.87万 - 项目类别:
Structural Biology of Multifunctional Bacterial Phosphatases
多功能细菌磷酸酶的结构生物学
- 批准号:
8711660 - 财政年份:2009
- 资助金额:
$ 57.87万 - 项目类别:
Structural Biology of Multifunctional Bacterial Phosphatases
多功能细菌磷酸酶的结构生物学
- 批准号:
8117171 - 财政年份:2009
- 资助金额:
$ 57.87万 - 项目类别:
相似国自然基金
Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
- 批准号:81971557
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
- 批准号:51678163
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Did light dictate ancient diversification of phylogeny and cell structure in the domain bacteria?
光是否决定了细菌领域的古代系统发育和细胞结构的多样化?
- 批准号:
24H00582 - 财政年份:2024
- 资助金额:
$ 57.87万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Cell Wall Formation in Rod Shaped Bacteria
杆状细菌细胞壁的形成
- 批准号:
BB/Y003187/1 - 财政年份:2024
- 资助金额:
$ 57.87万 - 项目类别:
Research Grant
DNA replication dynamics in living bacteria
活细菌中的 DNA 复制动态
- 批准号:
23K25843 - 财政年份:2024
- 资助金额:
$ 57.87万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Conference: Symposium on the Immune System of Bacteria
会议:细菌免疫系统研讨会
- 批准号:
2349218 - 财政年份:2024
- 资助金额:
$ 57.87万 - 项目类别:
Standard Grant
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 57.87万 - 项目类别:
Research Grant
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 57.87万 - 项目类别:
Fellowship
Assembly of the matrix that supports bacteria living in biofilms
支持生活在生物膜中的细菌的基质的组装
- 批准号:
2468773 - 财政年份:2024
- 资助金额:
$ 57.87万 - 项目类别:
Studentship
Manipulating two-component systems to activate cryptic antibiotic pathways in filamentous actinomycete bacteria
操纵双组分系统激活丝状放线菌中的神秘抗生素途径
- 批准号:
BB/Y005724/1 - 财政年份:2024
- 资助金额:
$ 57.87万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 57.87万 - 项目类别:
Research Grant
CAREER: Interfacial behavior of motile bacteria at structured liquid crystal interfaces
职业:运动细菌在结构化液晶界面的界面行为
- 批准号:
2338880 - 财政年份:2024
- 资助金额:
$ 57.87万 - 项目类别:
Continuing Grant














{{item.name}}会员




