Non-invasive automated wound analysis via deep learning neural networks

通过深度学习神经网络进行非侵入性自动伤口分析

基本信息

项目摘要

Project Summary: Each year millions of Americans develop chronic wounds, which require advanced wound care that has been estimated to cost $50 Billion annually. However, our understanding of chronic wounds and how to treat them has been limited by a lack of established methods to objectively characterize and measure wound features. Detailed assessments of wounds in the clinic and research laboratory often occur through histological analysis of tissue biopsies. This information can provide insight into cellular migration into the wound, cellular proliferation at the edge of the wound, infection, and fibrosis. However, the collection, creation, and analysis of histology sections is inherently invasive, time-consuming, and qualitative. The goal of this proposal is to develop an image analysis pipeline that can provide automated quantitative analysis of wounds and lay the groundwork for a non- invasive real-time “optical biopsy” that can provide information identical to standard histopathology. Our central hypothesis is that artificial intelligence approaches using deep learning convolutional neural networks can be coupled with in vivo multiphoton microscopy and existing quantitative image analysis methods to achieve this goal with the same accuracy as traditional biopsies with histological staining and expert analysis. In Aim 1, we will training and validate neural networks capable of segmenting and quantifying standard wound histology based on training from three independent wound healing research labs. In Aim 2, we will adapt this network to perform segmentation and quantification of in vivo label-free multiphoton microscopy images of skin wounds to provide rapid readouts of wound organization and metabolic function. Finally in Aim 3, we will develop and validate a network capable of generating virtual histology images from our stain-free non-invasive in vivo MPM images, which can be coupled with the networks developed in Aim 1 and 2 to provide a comprehensive assessment of wound microstructure and metabolism. In the near-term, this proposal will develop a series of robust analysis tools that can be applied to existing H&E-stained or unstained skin tissue sections commonly studied by wound healing researchers. In the long-term, the combination of label-free multiphoton microscopy and machine learning-based image analysis will enable completely non-invasive wound histology that can be performed in real-time at the point of care to guide debridement and wound care.
项目概要: 每年有数百万美国人发展为慢性伤口,这需要先进的伤口护理, 估计每年花费500亿美元。然而,我们对慢性伤口的理解以及如何治疗它们, 由于缺乏已建立的方法来客观地表征和测量伤口特征而受到限制。 在临床和研究实验室中,伤口的详细评估通常通过组织学分析进行 组织活检。这些信息可以提供深入了解细胞迁移到伤口,细胞增殖 感染和纤维化然而,组织学的收集、创造和分析 切片本身具有侵入性、耗时性和定性性。这个提案的目的是为了塑造一个形象 分析管道,可以提供伤口的自动化定量分析,并为非创伤分析奠定基础。 可以提供与标准组织病理学相同信息的侵入性实时“光学活检”。我们的中央 假设使用深度学习卷积神经网络的人工智能方法可以 结合体内多光子显微术和现有的定量图像分析方法来实现这一点 与传统的活检组织学染色和专家分析相同的准确性。目标1: 将训练和验证能够分割和量化标准伤口组织学的神经网络, 接受三个独立的伤口愈合研究实验室的培训在目标2中,我们将调整该网络以执行 皮肤伤口的体内无标记多光子显微镜图像的分割和量化, 伤口组织和代谢功能的快速读数。最后,在目标3中,我们将开发和验证一个 能够从我们的无染色非侵入性体内MPM图像生成虚拟组织学图像的网络, 这些网络可以与目标1和目标2中开发的网络相结合, 伤口微观结构和代谢。在短期内,这一建议将制定一系列强有力的分析, 可应用于现有的H& E染色或未染色的皮肤组织切片的工具, 疗愈研究者从长远来看,无标记多光子显微镜与机器的结合 基于学习的图像分析将实现完全非侵入性的伤口组织学, 在护理点实时指导清创和伤口护理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kyle Patrick Quinn其他文献

Kyle Patrick Quinn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kyle Patrick Quinn', 18)}}的其他基金

Administrative Core
行政核心
  • 批准号:
    10090744
  • 财政年份:
    2021
  • 资助金额:
    $ 39.28万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10867195
  • 财政年份:
    2021
  • 资助金额:
    $ 39.28万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10357743
  • 财政年份:
    2021
  • 资助金额:
    $ 39.28万
  • 项目类别:
Arkansas Integrative Metabolic Research Center
阿肯色州综合代谢研究中心
  • 批准号:
    10574555
  • 财政年份:
    2021
  • 资助金额:
    $ 39.28万
  • 项目类别:
Non-invasive automated wound analysis via deep learning neural networks
通过深度学习神经网络进行非侵入性自动伤口分析
  • 批准号:
    10631196
  • 财政年份:
    2021
  • 资助金额:
    $ 39.28万
  • 项目类别:
Acquisition of rodent metabolic and behavioral phenotyping system
啮齿动物代谢和行为表型系统的获取
  • 批准号:
    10799014
  • 财政年份:
    2021
  • 资助金额:
    $ 39.28万
  • 项目类别:
Acquisition of a confocal Raman microscope for molecular fingerprinting of cells and tissue
获取用于细胞和组织分子指纹分析的共焦拉曼显微镜
  • 批准号:
    10582119
  • 财政年份:
    2021
  • 资助金额:
    $ 39.28万
  • 项目类别:
Non-invasive automated wound analysis via deep learning neural networks
通过深度学习神经网络进行非侵入性自动伤口分析
  • 批准号:
    10183917
  • 财政年份:
    2021
  • 资助金额:
    $ 39.28万
  • 项目类别:
Arkansas Integrative Metabolic Research Center
阿肯色州综合代谢研究中心
  • 批准号:
    10357742
  • 财政年份:
    2021
  • 资助金额:
    $ 39.28万
  • 项目类别:
Arkansas Integrative Metabolic Research Center
阿肯色州综合代谢研究中心
  • 批准号:
    10090743
  • 财政年份:
    2021
  • 资助金额:
    $ 39.28万
  • 项目类别:

相似海外基金

Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 39.28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 39.28万
  • 项目类别:
    Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 39.28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 39.28万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 39.28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 39.28万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 39.28万
  • 项目类别:
    Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 39.28万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 39.28万
  • 项目类别:
    EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 39.28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了