Core 2: Biocomputational and Biostatistics Core
核心2:生物计算和生物统计学核心
基本信息
- 批准号:10210227
- 负责人:
- 金额:$ 21.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-03 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAnimal ExperimentsAnimal ModelAnimalsB-LymphocytesBasic ScienceBiological AssayBiometryBiostatistics CoreCell CommunicationCell LineCell NucleusCellsClinicalClinical ResearchClinical TrialsClonalityClone CellsCorrelative StudyDataData AnalysesEnsureExperimental DesignsGenesGeneticGenetic VariationGenomicsGlioblastomaGoalsHumanImmunosuppressionImmunotherapyIndividualInterventionInvestigationLaboratoriesLeadMapsMeasurementMusNoiseNon-MalignantPatientsPeer ReviewPhysiologicalProcessReproducibilityResourcesSchemeSpecimenT-Cell ActivationT-LymphocyteTechniquesVariantVisualizationWorkattenuationbiocomputingcell typeclinically relevantcomputational pipelinescomputerized data processingdata sharingdesignexperimental studygenetic manipulationhuman dataimmunological interventioninsightlaboratory experimentmouse modelpower analysispredicting responseprofiles in patientsprogramssingle-cell RNA sequencingtranscriptome sequencingtreatment responsetumortumor-immune system interactions
项目摘要
PROJECT SUMMARY/ABSTRACT—Core 2 Biocomputation and Biostatistics
The purpose of Core 2 Biocomputation and Biostatistics is to provide computational and statistical support
to the four Projects in this P01, and to collaborate with Cores to provide to address such computational and
biostatistical needs as required to accommodate the needs of the projects. This assures that the design,
conduct, and analyses of all experiments—clinical, correlative, animal, or basic science--use robust statistical
techniques that are appropriately implemented, and that the specialized resources to analyze and interpret
single cell RNA sequencing results are available to the projects on a priority basis, for cells from clinical trial
patients, from cell lines developed from those patients, and from murine experiments.. This central resource
thereby helps to elucidate the changes in T cell activation and attenuation that result from immunologic
interventions in GBM.
项目概要/摘要-核心2生物计算和生物统计学
核心2生物计算和生物统计的目的是提供计算和统计支持
本P01中的四个项目,并与核心合作,提供解决此类计算和
生物统计需要,以适应项目的需要。这保证了设计,
所有实验的进行和分析-临床的,相关的,动物的,或基础科学-使用稳健的统计
适当实施的技术,以及用于分析和解释的专门资源
单细胞RNA测序结果优先提供给项目,用于临床试验细胞
患者,从这些患者开发的细胞系,并从小鼠实验。这一核心资源
从而有助于阐明T细胞活化和衰减的变化,
GBM的干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DONNA S. NEUBERG其他文献
DONNA S. NEUBERG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DONNA S. NEUBERG', 18)}}的其他基金
Core 2: Biocomputational and Biostatistics Core
核心2:生物计算和生物统计学核心
- 批准号:
10684052 - 财政年份:2020
- 资助金额:
$ 21.64万 - 项目类别:
Core 2: Biocomputational and Biostatistics Core
核心2:生物计算和生物统计学核心
- 批准号:
10477996 - 财政年份:2020
- 资助金额:
$ 21.64万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 21.64万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 21.64万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 21.64万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 21.64万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 21.64万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 21.64万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 21.64万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 21.64万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 21.64万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 21.64万 - 项目类别:
Research Grant