Advancing Drug Repositioning for Alzheimer’s Disease using Real-world Data
利用真实世界数据推进阿尔茨海默病药物重新定位
基本信息
- 批准号:10330045
- 负责人:
- 金额:$ 79.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAffectAlzheimer&aposs DiseaseAlzheimer&aposs disease careAlzheimer&aposs disease related dementiaAmericanAnimal ModelBehavioralBiological MarkersCause of DeathChronic DiseaseClinicalCodeCohort StudiesCollectionCommunity HealthcareComplexConsumptionDataData SetDatabasesDegenerative DisorderDetectionDrug CompoundingDrug usageEducationElectronic Health RecordEmotionalEnvironmental Risk FactorFamilyFamily CaregiverFinancial HardshipFutureGeneticGenotypeGoldHealthHealth SciencesHealth systemHealthcare SystemsHigh PrevalenceHumanLinkLiteratureMachine LearningMental TestsMethodsModelingMolecularNatural Language ProcessingPF4 GenePathogenesisPatient RecruitmentsPatientsPennsylvaniaPharmaceutical PreparationsPharmacotherapyPhenotypePhysiciansPopulationProspective cohort studyQuality of lifeQuestionnairesRecording of previous eventsResearchRisk FactorsSample SizeSignal TransductionSmokingSpeedStructureTexasTimeTreatment outcomeUniversitiesUpdateVital StatisticsWomananalytical methodbasecancer therapycare costscohortcomputable phenotypescost estimatedementia riskdesigndrug developmentdrug repurposingeffective therapyefficacy testingefficacy validationfamily burdenhigh dimensionalityimproved outcomeindexingknowledge basemenmental statemild cognitive impairmentnovel therapeuticsopen sourcephenotyping algorithmpolygenic risk scorepower analysisprospectivesocialsuccesstranslational impacttreatment effect
项目摘要
Project Summary:
Alzheimer’s disease (AD) and AD-related dementias (ADRD) is the 6th leading cause of death affecting about
5.7 million Americans. Generally, one in five women and one in ten men are expected to develop AD/ADRD;
and the number of people living with AD/ADRD is expected to grow to 14 million in the next two decades. The
quality of life of AD/ADRD patients is gradually diminished and caring for AD/ADRD patients imposes
tremendous emotional and financial burden on family caregivers, communities, and healthcare systems.
However, up until now, there is no cure and not even effective treatment for AD/ADRD patients, probably due
to the complex mechanisms involved in the pathogenesis of AD/ADRD. As drug development is becoming
increasingly expensive and time-consuming (with estimated cost from $648 million8 to $2.5 billion9 and an
average of 9-12 years for new drugs), drug repurposing, aiming to discover new uses of existing drugs, is one
potential solution to speed up the drug development for AD/ADRD. However, previous attempts on drug
repurposing for AD/ADRD based on omics data have not been successful so far, indicating that animal models
may not translate to humans as readily as hoped. New methods that can speed up drug development for
AD/ADRD are needed.
In this study, we propose to detect drugs that can be potentially repurposed for AD/ADRD using 4 unique EHR
data sets. This study will address the critical challenges of EHR-based drug repurposing including incomplete
patient’s information and misclassification error associated bias. Aim 1 will focus on a drug repurposing
knowledgebase for AD/ADRD, natural language processing methods to extract risk factors from clinical
narratives, and phenotyping algorithms to accurately identify MCI and AD/ADRD patients to support the patient
cohort construction. In Aim 2, we will develop drug repurposing methods that account for the high-dimensional
of risk factors and misclassification error associated bias and apply them to detect drug repurposing signals
using large collections of EHRs from (1) the OneFlorida network (2) the Cerner Health Facts database, (3)
EHR from physician practice at University of Texas Health Science Center at Houston, and (4) EHR data from
the University of Pennsylvania. In Aim 3, we propose to validate the top-ranked signals through a prospective
cohort study. We will recruit patients and routinely collect detailed pragmatic information and genotypes to
validate the efficacy of the identified drug signals. The success of our study will: (1) produce a knowledgebase
with timely updated risk factors, biomarkers, genotypes, and drug signals for AD/ADRD, (2) develop an open-
source drug repurposing package - RAIDER (Repurposing Alzheimer Impacting Drugs using Electronic health
Records) for AD/ADRD, and (3) generate drug repurposing signals validated in a prospective cohort study,
which will inform the design of future large-scale national trials for AD/ADRD.
项目概要:
阿尔茨海默病(AD)和AD相关痴呆(ADRD)是第六大死亡原因,影响约100万人。
5.7数百万美国人一般来说,五分之一的女性和十分之一的男性预计会发展AD/ADRD;
在未来20年,AD/ADRD患者的数量预计将增长到1400万。的
AD/ADRD患者的生活质量逐渐下降,对AD/ADRD患者的护理要求
对家庭照顾者、社区和医疗保健系统造成巨大的情感和经济负担。
然而,到目前为止,AD/ADRD患者没有治愈,甚至没有有效的治疗方法,可能是由于
参与AD/ADRD发病机制的复杂机制。随着药物开发变得越来越
越来越昂贵和耗时(估计费用从6.48亿美元8到25亿美元9,
新药平均9-12年),药物再利用,旨在发现现有药物的新用途,是一种
加快AD/ADRD药物开发的潜在解决方案。然而,以前的药物尝试
到目前为止,基于组学数据的AD/ADRD再利用还没有成功,这表明动物模型
可能不会像希望的那样容易地转化为人类。新方法可以加速药物开发,
需要AD/ADRD。
在这项研究中,我们建议使用4个独特的EHR检测可能用于AD/ADRD的药物
数据集。这项研究将解决基于EHR的药物再利用的关键挑战,包括不完整的
患者信息和错误分类错误相关偏倚。Aim 1将重点关注药物再利用
AD/ADRD知识库,自然语言处理方法从临床中提取风险因素
叙述和表型分析算法,以准确识别MCI和AD/ADRD患者,
队列建设在目标2中,我们将开发药物再利用方法,
的风险因素和错误分类错误相关的偏见,并将其应用于检测药物再利用信号
使用来自(1)OneFlorida网络(2)Cerner Health Facts数据库(3)的大量EHR集合,
EHR来自休斯顿德克萨斯大学健康科学中心的医生实践,以及(4)EHR数据来自
宾夕法尼亚大学在目标3中,我们建议通过前瞻性的
队列研究我们将招募患者,并定期收集详细的实用信息和基因型,
验证所识别的药物信号的功效。本研究的成功将:(1)产生一个知识库
及时更新AD/ADRD的风险因素、生物标志物、基因型和药物信号,(2)开发一个开放的
源药物再利用包- RAIDER(使用电子健康再利用影响阿尔茨海默病的药物
记录),以及(3)生成在前瞻性队列研究中验证的药物再利用信号,
这将为未来AD/ADRD的大规模国家试验的设计提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiang Bian其他文献
Jiang Bian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiang Bian', 18)}}的其他基金
ACTS (AD Clinical Trial Simulation): Developing Advanced Informatics Approaches for an Alzheimer's Disease Clinical Trial Simulation System
ACTS(AD 临床试验模拟):为阿尔茨海默病临床试验模拟系统开发先进的信息学方法
- 批准号:
10753675 - 财政年份:2023
- 资助金额:
$ 79.87万 - 项目类别:
Disparities of Alzheimer's disease progression in sexual and gender minorities
性少数群体中阿尔茨海默病进展的差异
- 批准号:
10590413 - 财政年份:2023
- 资助金额:
$ 79.87万 - 项目类别:
Post-Acute Sequelae of SARS-CoV-2 Infection and Subsequent Disease Progression in Individuals with AD/ADRD: Influence of the Social and Environmental Determinants of Health
AD/ADRD 患者 SARS-CoV-2 感染的急性后遗症和随后的疾病进展:健康的社会和环境决定因素的影响
- 批准号:
10751275 - 财政年份:2023
- 资助金额:
$ 79.87万 - 项目类别:
Artificial Intelligence and Counterfactually Actionable Responses to End HIV (AI-CARE-HIV)
人工智能和反事实可行的终结艾滋病毒应对措施 (AI-CARE-HIV)
- 批准号:
10699171 - 财政年份:2023
- 资助金额:
$ 79.87万 - 项目类别:
An end-to-end informatics framework to study Multiple Chronic Conditions (MCC)'s impact on Alzheimer's disease using harmonized electronic health records
使用统一的电子健康记录研究多种慢性病 (MCC) 对阿尔茨海默病的影响的端到端信息学框架
- 批准号:
10728800 - 财政年份:2023
- 资助金额:
$ 79.87万 - 项目类别:
AI-ADRD: Accelerating interventions of AD/ADRD via Machine learning methods
AI-ADRD:通过机器学习方法加速 AD/ADRD 干预
- 批准号:
10682237 - 财政年份:2023
- 资助金额:
$ 79.87万 - 项目类别:
Advancing Precision Lung Cancer Surveillance and Outcomes in Diverse Populations (PLuS2)
推进不同人群的精准肺癌监测和结果 (PLuS2)
- 批准号:
10752848 - 财政年份:2023
- 资助金额:
$ 79.87万 - 项目类别:
Eligibility criteria design for Alzheimer's trials with real-world data and explainable AI
利用真实数据和可解释的人工智能设计阿尔茨海默病试验的资格标准
- 批准号:
10608470 - 财政年份:2023
- 资助金额:
$ 79.87万 - 项目类别:
Computational Drug Repurposing for AD/ADRD with Integrative Analysis of Real World Data and Biomedical Knowledge
通过对真实世界数据和生物医学知识的综合分析,计算药物再利用用于 AD/ADRD
- 批准号:
10576853 - 财政年份:2022
- 资助金额:
$ 79.87万 - 项目类别:
Computational Drug Repurposing for AD/ADRD with Integrative Analysis of Real World Data and Biomedical Knowledge
通过对真实世界数据和生物医学知识的综合分析,计算药物再利用用于 AD/ADRD
- 批准号:
10392169 - 财政年份:2022
- 资助金额:
$ 79.87万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 79.87万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 79.87万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 79.87万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 79.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 79.87万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 79.87万 - 项目类别:
Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 79.87万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 79.87万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 79.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 79.87万 - 项目类别:
Research Fellowships