Using clinical data to identify FDA-approved drugs for cancer prevention and therapeutic repurposing
使用临床数据来确定 FDA 批准的用于癌症预防和治疗再利用的药物
基本信息
- 批准号:10364999
- 负责人:
- 金额:$ 12.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project Summary/Abstract
Clinical data collection is accelerating rapidly, and in the future it will include both provider- and patient-
generated data. Hidden within this mass of noisy observational data are clues as to factors influencing disease
onset and outcome. Finding ways to exploit this trove of disease data can unlock a new perspective on disease
processes. We can tackle disease both from the bottom-up, from experimental data generated in the
laboratory, and from the top down, from clinical phenomena observed across human populations. A particularly
impactful and prevalent disease is cancer. Each tumor harbors a unique combination of mutations driving a
distinct set of oncogenic processes. Targeted therapies have been proposed to pinpoint these mutations,
potentially requiring a vast array of therapeutic options. Cancer treatment often fails when drug resistance
arises, another result of the complex combinatorial nature of tumor alterations. Combination therapies have
been proposed as an approach to interfere with multiple disease signals simultaneously. However, identifying
effective drug combinations, and the cancer types in which they are effective, is experimentally infeasible,
leading to a push for computational solutions.
In this proposal, we combine methods from social sciences and biostatistics to find the causal effect of a drug
on cancer onset from observational clinical data. Both increased and decreased cancer rates in drug-takers
are of equal interest, as they can inform us of disease processes and provide clinical impact. We are
particularly interested in finding drug combinations that impact cancer. These combination effects are unlikely
to have been detected, and our clinical data provides a unique resource for observing the effects of tens of
thousands of drug combinations. We will pool the resulting causal drug effect estimates across the many
cancers present in our data. To gain insight into the cellular processes underlying clinical effect, we will
examine the impact of known cancer-causing drugs in vitro, using large public cell line assays.
The accompanying goal is to provide Dr. Rachel Melamed with a career development experience to become
an independent scientist. Her research will use observational health data to understand the genesis of cancer,
prevent the disease, and discover new therapeutic options. This proposal takes advantage of the
interdisciplinary strengths of the University of Chicago in computation, biostatistics, and medicine, as well as
institutional resources in terms of data access and infrastructure. Dr. Melamed has assembled a team
consisting of complementary mentors and collaborators with expertise in computation, statistics, translational
medicine, personalized therapy, and cancer therapy. The career development plan focuses on enhancing her
statistics and machine learning skills with structured coursework and mentorship, and gaining experience in
biomedical applications via applied work and mentorship. This will provide Dr. Melamed with skills to model
observational data and to integrate the results with experimental data.
项目总结/摘要
临床数据收集正在迅速加速,未来将包括提供者和患者。
生成的数据。隐藏在这些嘈杂的观测数据中的是影响疾病因素的线索
发作和结果。找到利用这一疾病数据宝库的方法可以开启对疾病的新视角
流程.我们可以自下而上,从实验数据中,
从实验室,从上到下,从人群中观察到的临床现象。一个特别
最具影响力和流行的疾病是癌症。每个肿瘤都有一个独特的突变组合,
一组独特的致癌过程。已经提出了靶向治疗来精确定位这些突变,
可能需要大量的治疗选择。癌症治疗往往失败时,耐药性
这是肿瘤改变的复杂组合性质的另一个结果。联合疗法具有
被提出作为同时干扰多个疾病信号的方法。然而,识别
有效的药物组合,以及它们有效的癌症类型,在实验上是不可行的,
从而推动了计算解决方案。
在这个建议中,我们结合了社会科学和生物统计学的联合收割机方法来寻找药物的因果效应
对癌症发病的影响。吸毒者的癌症发病率增加和减少
同样重要的是,它们可以告诉我们疾病的过程并提供临床影响。我们
尤其是对发现影响癌症的药物组合感兴趣。这些组合效应不太可能
我们的临床数据提供了一个独特的资源,用于观察数十种
成千上万的药物组合。我们将汇总多个研究中的因果药物效应估计值,
癌症在我们的数据中。为了深入了解临床效应背后的细胞过程,我们将
使用大型公共细胞系试验,检查已知致癌药物的体外影响。
伴随的目标是为Rachel Melamed博士提供职业发展经验,
独立的科学家。她的研究将使用观察性健康数据来了解癌症的起源,
预防疾病,并发现新的治疗选择。该提案利用了
芝加哥大学在计算、生物统计和医学方面的跨学科优势,以及
在数据访问和基础设施方面的机构资源。梅拉梅德博士召集了一个小组
由互补的导师和合作者组成,他们在计算、统计、翻译、
药物、个性化治疗和癌症治疗。职业发展计划的重点是提高她的
通过结构化的课程和指导,掌握统计和机器学习技能,并获得以下方面的经验:
通过应用工作和指导进行生物医学应用。这将为梅拉梅德博士提供建模技能,
观测数据,并将结果与实验数据相结合。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Dania Melamed其他文献
Rachel Dania Melamed的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Dania Melamed', 18)}}的其他基金
Integrating genetics and health data to discover common drug effects on cancer and Alzheimer's disease
整合遗传学和健康数据来发现药物对癌症和阿尔茨海默病的常见影响
- 批准号:
10714080 - 财政年份:2023
- 资助金额:
$ 12.54万 - 项目类别:
Using clinical data to identify FDA-approved drugs for cancer prevention and therapeutic repurposing
使用临床数据来确定 FDA 批准的用于癌症预防和治疗再利用的药物
- 批准号:
9324540 - 财政年份:2017
- 资助金额:
$ 12.54万 - 项目类别:
相似国自然基金
"胚胎/生殖细胞发育特性激活”促进“神经胶质瘤恶变”的机制及其临床价值研究
- 批准号:82372327
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
OBSL1功能缺失导致多指(趾)畸形的分子机制及其临床诊断价值
- 批准号:82372328
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
自身免疫性T细胞的抗原决定簇在抗肾小球基底膜病发病中的启动机制
- 批准号:81170645
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
相似海外基金
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
- 批准号:
10748859 - 财政年份:2024
- 资助金额:
$ 12.54万 - 项目类别:
Development and clinical application of AI model to support diagnosis of dementia using medical big data from electronic medical records
利用电子病历中的医疗大数据支持痴呆症诊断的人工智能模型的开发和临床应用
- 批准号:
22KJ3211 - 财政年份:2023
- 资助金额:
$ 12.54万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Using clinical polysomnography data and machine learning to determine minimum sensing requirements for pediatric sleep studies
使用临床多导睡眠图数据和机器学习来确定儿科睡眠研究的最低传感要求
- 批准号:
491364 - 财政年份:2023
- 资助金额:
$ 12.54万 - 项目类别:
Operating Grants
Sonodynamic therapy using MRI-guided focused ultrasound in combination with 5-aminolevulinic acid to treat recurrent glioblastoma multiforme
使用 MRI 引导聚焦超声联合 5-氨基乙酰丙酸的声动力疗法治疗复发性多形性胶质母细胞瘤
- 批准号:
10699858 - 财政年份:2023
- 资助金额:
$ 12.54万 - 项目类别:
An evaluation of composite endpoints using data from the EXCITE trial
使用 EXCITE 试验的数据评估复合终点
- 批准号:
10645995 - 财政年份:2023
- 资助金额:
$ 12.54万 - 项目类别:
Targeting Alcohol-Opioid Co-Use Among Young Adults Using a Novel MHealth Intervention
使用新型 MHealth 干预措施针对年轻人中酒精与阿片类药物的同时使用
- 批准号:
10456380 - 财政年份:2023
- 资助金额:
$ 12.54万 - 项目类别:
Using Common Fund Datasets to Illuminate Drug-Microbial Interactions
使用共同基金数据集阐明药物-微生物相互作用
- 批准号:
10777339 - 财政年份:2023
- 资助金额:
$ 12.54万 - 项目类别:
Modeling the Responsiveness of Sensitive Populations to Genotoxic Agents Using DNA Repair Inhibitors
使用 DNA 修复抑制剂模拟敏感人群对基因毒性药物的反应性
- 批准号:
10734425 - 财政年份:2023
- 资助金额:
$ 12.54万 - 项目类别:
Crossroads: Using decision making strategies to develop high impact content for training in rigor and transparency.
十字路口:使用决策策略来开发高影响力的内容,以进行严格和透明的培训。
- 批准号:
10722510 - 财政年份:2023
- 资助金额:
$ 12.54万 - 项目类别:
Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in Alzheimer's Disease using Data-driven Neural Model
使用数据驱动的神经模型准确、个性化地预测阿尔茨海默病的兴奋抑制失衡
- 批准号:
10727356 - 财政年份:2023
- 资助金额:
$ 12.54万 - 项目类别: