NEW CHEMICAL PROBES ENABLE MASS SPECTROMETRY-BASED FOOTPRINTING OF HUMAN PROTEIN STRUCTURE IN LIPID

新的化学探针实现了基于质谱的脂质中人类蛋白质结构的足迹

基本信息

  • 批准号:
    10390166
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-03-01 至 2023-02-28
  • 项目状态:
    已结题

项目摘要

The sensitivity, resolving power, and speed of modern mass spectrometers now afford the opportunity to develop bottom-up footprinting methods capable of resolving significant structural and dynamics questions of membrane proteins. This bottom-up approach is a fundamentally more powerful alternative to the top-down mass spectrometry (MS) studies that have been mainly limited to bacterial membrane proteins. We focus on human proteins because they participate in almost all physiological processes and represent more than 60% of drug targets. They, however, represent the most challenging targets for traditional high-resolution structural methods. Structures of about 100 of these proteins are known to date, leaving a large gap for footprinting MS to fill. Our long-term goal is to develop comprehensive footprinting MS methods that offer a unique approach to structure and dynamics of membrane proteins in live cells and in vitro lipid bilayers. Our objective here is to synthesize new chemical probes that provide high footprinting coverage to reveal the ligand interaction and dynamic transport motion of ferroportin, a model protein representing the largest superfamily of membrane transporters and maintaining iron homeostasis in humans. Our hypotheses are: (1) Complementary chemistry can maximize the coverage of footprinting and thereby improve its spatial resolution. Furthermore, tuning the physical properties of the labeling reagents will allow access to the hydrophobic region of membrane proteins. (2) Photoactivated fast footprinting can reveal dynamic transporter motions taking place within milliseconds, which is beyond the current scope of membrane structure biology. (3) Bio-orthogonal irreversible labeling can be optimized to reveal the cellular structure state of membrane proteins, a structure that is elusive by crystallography or cryo-EM. Use of these conventional methods requires purified proteins, but most membrane proteins are insufficiently stable to withstand demanding purification. Live-cell footprinting completely avoids this giant difficulty. Our hypotheses are built on extensive preliminary data produced in our laboratories. Specifically, we continue to demonstrate our capability to explore new chemistry and synthesize new reagents. Our ongoing studies prove the principle that MS footprinting can reveal ligand- binding interaction of human membrane proteins in lipid bilayer, and can report on their native structural state and motion in live cells. To accomplish our goals, we will pursue three specific aims: (1) develop new chemical probes to provide high footprinting coverage of membrane proteins; (2) implement the new probes in lipid membrane systems to study the ligand interaction and millisecond motion of ferroportin; and (3) demonstrate the new probes’ compatibility with live- cell footprinting by the detection of cellular motions and ligand interactions of ferroportin. Our innovative footprinting coupled with bottom-up MS proteomics analysis will establish effective, broad-based footprinting in live cells and lipid membranes. The significance of the proposed approach will expand because MS-based footprinting can be broadly applied by structural proteomics researchers to biomedically important human membrane proteins.
现代质谱仪的灵敏度、分辨率和速度现在可以满足 有机会开发自下而上的足迹方法,能够解决重大结构问题 和膜蛋白的动力学问题。这种自下而上的方法从根本上来说是一种更 自上而下的质谱(MS)研究的有力替代方案主要是 仅限于细菌膜蛋白。我们关注人类蛋白质,因为它们参与 几乎所有的生理过程,代表了 60% 以上的药物靶点。然而,他们 代表了传统高分辨率结构方法最具挑战性的目标。 迄今为止,其中约 100 种蛋白质的结构已为人所知,为足迹追踪留下了很大的空白 MS来补。我们的长期目标是开发全面的足迹 MS 方法,提供 研究活细胞和体外脂质膜蛋白结构和动力学的独特方法 双层。我们的目标是合成提供高足迹的新化学探针 覆盖揭示铁转运蛋白的配体相互作用和动态运输运动,这是一个模型 代表最大的膜转运蛋白超家族并维持铁的蛋白质 人类的体内平衡。我们的假设是:(1)互补化学可以最大化 覆盖足迹,从而提高其空间分辨率。此外,调整 标记试剂的物理特性将允许进入标记试剂的疏水区域 膜蛋白。 (2) 光激活快速足迹可以揭示动态转运蛋白运动 在几毫秒内发生,这超出了当前膜结构生物学的范围。 (3) 可以优化生物正交不可逆标记来揭示细胞结构状态 膜蛋白,一种通过晶体学或冷冻电镜难以捉摸的结构。使用这些 传统方法需要纯化蛋白质,但大多数膜蛋白不足以 稳定,可承受苛刻的净化。活细胞足迹完全避开了这个巨人 困难。我们的假设建立在我们实验室产生的大量初步数据的基础上。 具体来说,我们继续展示我们探索新化学和合成的能力 新试剂。我们正在进行的研究证明了 MS 足迹分析可以揭示配体的原理 脂双层中人膜蛋白的结合相互作用,并可以报告其天然的 活细胞的结构状态和运动。为了实现我们的目标,我们将追求三个具体目标 目标:(1)开发新的化学探针以提供膜的高足迹覆盖率 蛋白质; (2) 在脂膜系统中应用新探针来研究配体相互作用 和铁转运蛋白的毫秒运动; (3) 展示新探头与现场的兼容性 通过检测细胞运动和铁转运蛋白的配体相互作用来进行细胞足迹。我们的 创新足迹法与自下而上的 MS 蛋白质组学分析相结合将建立有效的、 活细胞和脂质膜中的广泛足迹。拟议的意义 方法将会扩展,因为基于 MS 的足迹可以广泛应用于结构 蛋白质组学研究人员研究了生物医学上重要的人类膜蛋白。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MICHAEL L GROSS其他文献

MICHAEL L GROSS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MICHAEL L GROSS', 18)}}的其他基金

A Biomedical Mass Spectrometry Resource: Ongoing Driving Biomedical Projects
生物医学质谱资源:持续推动生物医学项目
  • 批准号:
    10441142
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
New chemical probes enable Mass Spectrometry-based footprinting of human protein structure in lipid membranes and cells
新的化学探针能够基于质谱分析脂膜和细胞中的人类蛋白质结构
  • 批准号:
    10350642
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
NEW CHEMICAL PROBES ENABLE MASS SPECTROMETRY-BASED FOOTPRINTING OF HUMAN PROTEIN STRUCTURE IN LIPID MEMBRANES AND CELLS
新的化学探针能够对脂质膜和细胞中的人体蛋白质结构进行基于质谱的足迹分析
  • 批准号:
    10587527
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
A MASS SPECTROMETER FOR PROTEIN FOOTPRINTING
用于蛋白质足迹分析的质谱仪
  • 批准号:
    8637341
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
APPROACHES TO IMPROVE PROTEIN FOOTPRINTING: HIGH PRESSURE DIGESTION
改善蛋白质足迹的方法:高压消化
  • 批准号:
    8361405
  • 财政年份:
    2011
  • 资助金额:
    $ 25万
  • 项目类别:
HIGH ENERGY COLLISIONAL ACTIVATION
高能碰撞激活
  • 批准号:
    8361422
  • 财政年份:
    2011
  • 资助金额:
    $ 25万
  • 项目类别:
UNDERGRADUATE TRAINING IN MASS SPECTROMETRY
质谱学本科培训
  • 批准号:
    8361432
  • 财政年份:
    2011
  • 资助金额:
    $ 25万
  • 项目类别:
VISITING SCIENTISTS
访问科学家
  • 批准号:
    8361338
  • 财政年份:
    2011
  • 资助金额:
    $ 25万
  • 项目类别:
STRUCTURAL STUDIES OF GRAMICIDIN & OTHER SELF-ASSOCIATING PEPTIDES
短杆菌肽的结构研究
  • 批准号:
    8361321
  • 财政年份:
    2011
  • 资助金额:
    $ 25万
  • 项目类别:
CONTRIBUTED PRESENTATIONS AT CONFERENCES
在会议上发表演讲
  • 批准号:
    8361333
  • 财政年份:
    2011
  • 资助金额:
    $ 25万
  • 项目类别:

相似海外基金

An investigation into the sustainability low-cost additive manufactured metal cellular structures
对可持续性低成本增材制造金属蜂窝结构的研究
  • 批准号:
    573887-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    University Undergraduate Student Research Awards
Design And Validation Of 3D Printed Aperiodic Cellular Structures
3D 打印非周期蜂窝结构的设计和验证
  • 批准号:
    2606814
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Studentship
SBIR Phase I: Automated Assembly of Discrete Cellular Structures
SBIR 第一阶段:离散蜂窝结构的自动组装
  • 批准号:
    2036680
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Statistical Mechanics of Cellular Structures
职业:细胞结构的统计力学
  • 批准号:
    2046683
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
IIBR Instrumentation: Integrated optical imaging and machine-learning platforms for mapping 3D topology of nanoscale cellular structures
IIBR Instrumentation:集成光学成像和机器学习平台,用于绘制纳米级细胞结构的 3D 拓扑
  • 批准号:
    1945373
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Production and characterization of complex folded cellular structures made of sheet metal
由金属板材制成的复杂折叠蜂窝结构的生产和表征
  • 批准号:
    427257349
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Research Grants
Computational investigation of thermo-diffusive instabilities in flames: from laminar cellular structures to turbulent flows
火焰中热扩散不稳定性的计算研究:从层状细胞结构到湍流
  • 批准号:
    1832548
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Contactless Formation of 3D Cellular Structures for Economical Bioprinting
非接触式形成 3D 细胞结构,实现经济的生物打印
  • 批准号:
    513882-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Engage Grants Program
Relation between Structural Heterogeneity of Cellular Structures and Mechanical Properties of Polymer Foams
多孔结构的结构异质性与聚合物泡沫力学性能的关系
  • 批准号:
    16K05513
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a method to isolate molecules in cellular structures where fluorescent proteins localize
开发一种方法来分离荧光蛋白定位的细胞结构中的分子
  • 批准号:
    15K14500
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了