NEW CHEMICAL PROBES ENABLE MASS SPECTROMETRY-BASED FOOTPRINTING OF HUMAN PROTEIN STRUCTURE IN LIPID
新的化学探针实现了基于质谱的脂质中人类蛋白质结构的足迹
基本信息
- 批准号:10390166
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:CellsCellular StructuresChemicalsChemistryCoupledCryoelectron MicroscopyCrystallographyDataDetectionDrug TargetingGoalsHomeostasisHumanHydrophobicityIn VitroIronLabelLaboratoriesLigand BindingLigandsLipid BilayersLipidsMass Spectrum AnalysisMembraneMembrane LipidsMembrane ProteinsMembrane Transport ProteinsMethodsModelingModernizationMotionPhysiological ProcessesProteinsProteomicsReagentReportingResearch PersonnelResolutionSpeedStructureSystembaseimprovedinnovationmass spectrometermetal transporting protein 1millisecondphysical propertyprotein structurestructural biology
项目摘要
The sensitivity, resolving power, and speed of modern mass spectrometers now afford the
opportunity to develop bottom-up footprinting methods capable of resolving significant structural
and dynamics questions of membrane proteins. This bottom-up approach is a fundamentally more
powerful alternative to the top-down mass spectrometry (MS) studies that have been mainly
limited to bacterial membrane proteins. We focus on human proteins because they participate in
almost all physiological processes and represent more than 60% of drug targets. They, however,
represent the most challenging targets for traditional high-resolution structural methods.
Structures of about 100 of these proteins are known to date, leaving a large gap for footprinting
MS to fill. Our long-term goal is to develop comprehensive footprinting MS methods that offer a
unique approach to structure and dynamics of membrane proteins in live cells and in vitro lipid
bilayers. Our objective here is to synthesize new chemical probes that provide high footprinting
coverage to reveal the ligand interaction and dynamic transport motion of ferroportin, a model
protein representing the largest superfamily of membrane transporters and maintaining iron
homeostasis in humans. Our hypotheses are: (1) Complementary chemistry can maximize the
coverage of footprinting and thereby improve its spatial resolution. Furthermore, tuning the
physical properties of the labeling reagents will allow access to the hydrophobic region of
membrane proteins. (2) Photoactivated fast footprinting can reveal dynamic transporter motions
taking place within milliseconds, which is beyond the current scope of membrane structure biology.
(3) Bio-orthogonal irreversible labeling can be optimized to reveal the cellular structure state of
membrane proteins, a structure that is elusive by crystallography or cryo-EM. Use of these
conventional methods requires purified proteins, but most membrane proteins are insufficiently
stable to withstand demanding purification. Live-cell footprinting completely avoids this giant
difficulty. Our hypotheses are built on extensive preliminary data produced in our laboratories.
Specifically, we continue to demonstrate our capability to explore new chemistry and synthesize
new reagents. Our ongoing studies prove the principle that MS footprinting can reveal ligand-
binding interaction of human membrane proteins in lipid bilayer, and can report on their native
structural state and motion in live cells. To accomplish our goals, we will pursue three specific
aims: (1) develop new chemical probes to provide high footprinting coverage of membrane
proteins; (2) implement the new probes in lipid membrane systems to study the ligand interaction
and millisecond motion of ferroportin; and (3) demonstrate the new probes’ compatibility with live-
cell footprinting by the detection of cellular motions and ligand interactions of ferroportin. Our
innovative footprinting coupled with bottom-up MS proteomics analysis will establish effective,
broad-based footprinting in live cells and lipid membranes. The significance of the proposed
approach will expand because MS-based footprinting can be broadly applied by structural
proteomics researchers to biomedically important human membrane proteins.
现在,现代质谱仪的灵敏度、分辨率和速度都使我们有能力
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL L GROSS其他文献
MICHAEL L GROSS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL L GROSS', 18)}}的其他基金
A Biomedical Mass Spectrometry Resource: Ongoing Driving Biomedical Projects
生物医学质谱资源:持续推动生物医学项目
- 批准号:
10441142 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
New chemical probes enable Mass Spectrometry-based footprinting of human protein structure in lipid membranes and cells
新的化学探针能够基于质谱分析脂膜和细胞中的人类蛋白质结构
- 批准号:
10350642 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
NEW CHEMICAL PROBES ENABLE MASS SPECTROMETRY-BASED FOOTPRINTING OF HUMAN PROTEIN STRUCTURE IN LIPID MEMBRANES AND CELLS
新的化学探针能够对脂质膜和细胞中的人体蛋白质结构进行基于质谱的足迹分析
- 批准号:
10587527 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
APPROACHES TO IMPROVE PROTEIN FOOTPRINTING: HIGH PRESSURE DIGESTION
改善蛋白质足迹的方法:高压消化
- 批准号:
8361405 - 财政年份:2011
- 资助金额:
$ 25万 - 项目类别:
STRUCTURAL STUDIES OF GRAMICIDIN & OTHER SELF-ASSOCIATING PEPTIDES
短杆菌肽的结构研究
- 批准号:
8361321 - 财政年份:2011
- 资助金额:
$ 25万 - 项目类别:
相似海外基金
An investigation into the sustainability low-cost additive manufactured metal cellular structures
对可持续性低成本增材制造金属蜂窝结构的研究
- 批准号:
573887-2022 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
University Undergraduate Student Research Awards
Design And Validation Of 3D Printed Aperiodic Cellular Structures
3D 打印非周期蜂窝结构的设计和验证
- 批准号:
2606814 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Studentship
SBIR Phase I: Automated Assembly of Discrete Cellular Structures
SBIR 第一阶段:离散蜂窝结构的自动组装
- 批准号:
2036680 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Statistical Mechanics of Cellular Structures
职业:细胞结构的统计力学
- 批准号:
2046683 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
IIBR Instrumentation: Integrated optical imaging and machine-learning platforms for mapping 3D topology of nanoscale cellular structures
IIBR Instrumentation:集成光学成像和机器学习平台,用于绘制纳米级细胞结构的 3D 拓扑
- 批准号:
1945373 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Production and characterization of complex folded cellular structures made of sheet metal
由金属板材制成的复杂折叠蜂窝结构的生产和表征
- 批准号:
427257349 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Research Grants
Computational investigation of thermo-diffusive instabilities in flames: from laminar cellular structures to turbulent flows
火焰中热扩散不稳定性的计算研究:从层状细胞结构到湍流
- 批准号:
1832548 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Contactless Formation of 3D Cellular Structures for Economical Bioprinting
非接触式形成 3D 细胞结构,实现经济的生物打印
- 批准号:
513882-2017 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Engage Grants Program
Relation between Structural Heterogeneity of Cellular Structures and Mechanical Properties of Polymer Foams
多孔结构的结构异质性与聚合物泡沫力学性能的关系
- 批准号:
16K05513 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a method to isolate molecules in cellular structures where fluorescent proteins localize
开发一种方法来分离荧光蛋白定位的细胞结构中的分子
- 批准号:
15K14500 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research














{{item.name}}会员




