New chemical probes enable Mass Spectrometry-based footprinting of human protein structure in lipid membranes and cells
新的化学探针能够基于质谱分析脂膜和细胞中的人类蛋白质结构
基本信息
- 批准号:10350642
- 负责人:
- 金额:$ 40.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressBindingBiologicalBiologyCardiovascular systemCell SurvivalCellsCellular Metabolic ProcessCellular StructuresChemicalsChemistryCoupledCryoelectron MicroscopyCrystallographyDataDetectionDevelopmentDrug TargetingEffectivenessEnvironmentFoundationsFundingGasesGoalsHomeostasisHumanHydrogen PeroxideHydrophobicityIn VitroIronLabelLaboratoriesLasersLigand BindingLigandsLipid BilayersMass Spectrum AnalysisMembraneMembrane LipidsMembrane ProteinsMembrane Transport ProteinsMethodologyMethodsModelingModernizationMolecularMolecular ConformationMotionPeptidesPharmaceutical PreparationsPhasePhysiological ProcessesPoliciesProtein RegionProteinsProteomicsPublic HealthReactionReagentReportingResearchResearch PersonnelResolutionResourcesSeriesSignal TransductionSpeedStructural BiologistStructureSystemTestingUnited States National Institutes of HealthWorkbasecell growth regulationdesignhepcidinimprovedinnovationlipid solubilitymass spectrometermetal transporting protein 1millisecondnanodisknovel therapeuticspeptide hormoneperoxidationphysical propertyprotein structurerational designsimulationstructural biologysuccesstool
项目摘要
The sensitivity, resolving power, and speed of modern mass spectrometers now afford the opportunity to develop
bottom-up footprinting methods capable of resolving significant structural and dynamics questions of membrane
proteins. This bottom-up approach is a fundamentally more powerful alternative to the top-down mass
spectrometry (MS) studies that have been mainly limited to bacterial membrane proteins. We focus on human
proteins because they participate in almost all physiological processes and represent more than 60% of drug
targets. They, however, represent the most challenging targets for traditional high-resolution structural methods.
Structures of about 100 of these proteins are known to date, leaving a large gap for footprinting MS to fill. Our
long-term goal is to develop comprehensive footprinting MS methods that offer a unique approach to structure
and dynamics of membrane proteins in live cells and in vitro lipid bilayers. Our objective here is to synthesize
new chemical probes that provide high footprinting coverage to reveal the ligand interaction and dynamic
transport motion of ferroportin, a model protein representing the largest superfamily of membrane transporters
and maintaining iron homeostasis in humans. Our hypotheses are: (1) Complementary chemistry can maximize
the coverage of footprinting and thereby improve its spatial resolution. Furthermore, tuning the physical
properties of the labeling reagents will allow access to the hydrophobic region of membrane proteins. (2) Photo-
activated fast footprinting can reveal dynamic transporter motions taking place within milliseconds, which is
beyond the current scope of membrane structure biology. (3) Bio-orthogonal irreversible labeling can be
optimized to reveal the cellular structure state of membrane proteins, a structure that is elusive by crystallography
or cryo-EM. Use of these conventional methods requires purified proteins, but most membrane proteins are
insufficiently stable to withstand demanding purification. Live-cell footprinting completely avoids this giant
difficulty. Our hypotheses are built on extensive preliminary data produced in our laboratories. Specifically, we
continue to demonstrate our capability to explore new chemistry and synthesize new reagents. Our ongoing
studies prove the principle that MS footprinting can reveal ligand-binding interaction of human membrane
proteins in lipid bilayer, and can report on their native structural state and motion in live cells. To accomplish our
goals, we will pursue three specific aims: (1) develop new chemical probes to provide high footprinting coverage
of membrane proteins; (2) implement the new probes in lipid membrane systems to study the ligand interaction
and millisecond motion of ferroportin; and (3) demonstrate the new probes' compatibility with live-cell footprinting
by the detection of cellular motions and ligand interactions of ferroportin. Our innovative footprinting coupled with
bottom-up MS proteomics analysis will establish effective, broad-based footprinting in live cells and lipid
membranes. The significance of the proposed approach will expand because MS-based footprinting can be
broadly applied by structural proteomics researchers to biomedically important human membrane proteins.
现代质谱仪的灵敏度、分辨率和速度现在为发展提供了机会。
能够解决膜的重要结构和动力学问题的自下而上的足迹方法
蛋白质。这种自下而上的方法从根本上来说是一种比自上而下的质量更强大的选择
光谱(MS)研究主要限于细菌膜蛋白。我们关注的是人类
蛋白质,因为它们参与了几乎所有的生理过程,占药物总量的60%以上
目标。然而,它们是传统高分辨率结构方法最具挑战性的目标。
到目前为止,大约有100个这样的蛋白质的结构是已知的,留下了一个很大的空白,需要MS来填补。我们的
长期目标是开发全面的足迹MS方法,提供独特的结构方法
以及活细胞和体外脂双层中膜蛋白的动态变化。我们的目标是合成
提供高足迹覆盖率以揭示配体相互作用和动态的新化学探针
代表最大膜转运蛋白超家族的模型蛋白--铁蛋白的转运运动
以及维持人类体内的铁平衡。我们的假设是:(1)补充化学可以最大化
覆盖了足迹,从而提高了空间分辨率。此外,调谐物理
标记试剂的性质将允许进入膜蛋白的疏水性区域。(2)照片-
激活的快速足迹可以揭示发生在毫秒内的动态转运体运动,这是
超出了目前膜结构生物学的范围。(3)生物正交不可逆标记可以
优化以揭示膜蛋白的细胞结构状态,这是一种结晶学难以捉摸的结构
或者是冷冻-EM。使用这些传统的方法需要纯化的蛋白质,但大多数膜蛋白是
不够稳定,经不起苛刻的提纯。活细胞足迹完全避免了这个庞然大物
困难重重。我们的假设建立在实验室产生的大量初步数据的基础上。具体来说,我们
继续展示我们探索新化学和合成新试剂的能力。我们正在进行的
研究证明MS足迹可以揭示人膜的配体结合作用的原理
蛋白质存在于脂双层中,并可以报告它们在活细胞中的天然结构状态和运动。为了实现我们的目标
为了实现目标,我们将追求三个具体目标:(1)开发新的化学探测器,以提供高足迹覆盖率
(2)在脂膜体系中应用新的探针研究配体相互作用。
和毫秒运动;以及(3)证明了新的探针与活细胞足迹的兼容性
通过检测细胞运动和铁蛋白的配基相互作用。我们的创新足迹与
自下而上的MS蛋白质组学分析将在活细胞和脂质中建立有效的、广泛的足迹
膜。提出的方法的意义将扩大,因为基于MS的足迹可以
被结构蛋白质组学研究人员广泛应用于生物医学上重要的人膜蛋白。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL L GROSS其他文献
MICHAEL L GROSS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL L GROSS', 18)}}的其他基金
A Biomedical Mass Spectrometry Resource: Ongoing Driving Biomedical Projects
生物医学质谱资源:持续推动生物医学项目
- 批准号:
10441142 - 财政年份:2020
- 资助金额:
$ 40.98万 - 项目类别:
NEW CHEMICAL PROBES ENABLE MASS SPECTROMETRY-BASED FOOTPRINTING OF HUMAN PROTEIN STRUCTURE IN LIPID
新的化学探针实现了基于质谱的脂质中人类蛋白质结构的足迹
- 批准号:
10390166 - 财政年份:2019
- 资助金额:
$ 40.98万 - 项目类别:
NEW CHEMICAL PROBES ENABLE MASS SPECTROMETRY-BASED FOOTPRINTING OF HUMAN PROTEIN STRUCTURE IN LIPID MEMBRANES AND CELLS
新的化学探针能够对脂质膜和细胞中的人体蛋白质结构进行基于质谱的足迹分析
- 批准号:
10587527 - 财政年份:2019
- 资助金额:
$ 40.98万 - 项目类别:
APPROACHES TO IMPROVE PROTEIN FOOTPRINTING: HIGH PRESSURE DIGESTION
改善蛋白质足迹的方法:高压消化
- 批准号:
8361405 - 财政年份:2011
- 资助金额:
$ 40.98万 - 项目类别:
STRUCTURAL STUDIES OF GRAMICIDIN & OTHER SELF-ASSOCIATING PEPTIDES
短杆菌肽的结构研究
- 批准号:
8361321 - 财政年份:2011
- 资助金额:
$ 40.98万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
I-Corps: Translation Potential of Real-time, Ultrasensitive Electrical Transduction of Biological Binding Events for Pathogen and Disease Detection
I-Corps:生物结合事件的实时、超灵敏电转导在病原体和疾病检测中的转化潜力
- 批准号:
2419915 - 财政年份:2024
- 资助金额:
$ 40.98万 - 项目类别:
Standard Grant
Modelling drug binding to biological ion channels
模拟药物与生物离子通道的结合
- 批准号:
2747257 - 财政年份:2022
- 资助金额:
$ 40.98万 - 项目类别:
Studentship
Elucidation of biological functions of the NCBP3 RNA-binding protein using a novel mutant mouse strain
使用新型突变小鼠品系阐明 NCBP3 RNA 结合蛋白的生物学功能
- 批准号:
22K06065 - 财政年份:2022
- 资助金额:
$ 40.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identifying binding partners, biological substrates and antisense oligonucleotides regulating expression of short and long ACE2.
识别调节短和长 ACE2 表达的结合伴侣、生物底物和反义寡核苷酸。
- 批准号:
BB/V019848/1 - 财政年份:2021
- 资助金额:
$ 40.98万 - 项目类别:
Research Grant
Structure and function of pufferfish toxin, tetrodotoxin, binding proteins as biological defense agent
河豚毒素、河豚毒素、结合蛋白作为生物防御剂的结构和功能
- 批准号:
19K06241 - 财政年份:2019
- 资助金额:
$ 40.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The molecular and biological roles of growth inhibiting chromatin binding proteins
生长抑制染色质结合蛋白的分子和生物学作用
- 批准号:
nhmrc : GNT1143612 - 财政年份:2018
- 资助金额:
$ 40.98万 - 项目类别:
Project Grants
Investigating a biological specificity conundrum: the role of dynamics in transcription factor binding
研究生物特异性难题:动力学在转录因子结合中的作用
- 批准号:
406750 - 财政年份:2018
- 资助金额:
$ 40.98万 - 项目类别:
Studentship Programs
Electrical Detection of Small Molecule Binding to Biological Receptors using Organic Thin Film Transistors : A new approach for label free assays
使用有机薄膜晶体管对小分子与生物受体结合的电检测:一种无标记测定的新方法
- 批准号:
133593 - 财政年份:2018
- 资助金额:
$ 40.98万 - 项目类别:
Feasibility Studies
Biological effect and preventive method for human serum albumin binding to transboundary air borne PM2.5.
人血清白蛋白与跨境空气PM2.5结合的生物学效应及预防方法。
- 批准号:
18H03039 - 财政年份:2018
- 资助金额:
$ 40.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The molecular and biological roles of growth inhibiting chromatin binding proteins
生长抑制染色质结合蛋白的分子和生物学作用
- 批准号:
nhmrc : 1143612 - 财政年份:2018
- 资助金额:
$ 40.98万 - 项目类别:
Project Grants














{{item.name}}会员




