Scalable electron tomography for connectomics

用于连接组学的可扩展电子断层扫描

基本信息

  • 批准号:
    10410742
  • 负责人:
  • 金额:
    $ 291.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-15 至 2025-07-14
  • 项目状态:
    未结题

项目摘要

Project Summary / Abstract A fundamental goal in neuroscience is understanding how neural network function arises from circuit structure. However, the immense complexity of most brain networks has been a significant barrier to progress. We do not have a comprehensive wiring diagram for any mammalian local circuit, much less a whole brain. We do not yet have a comprehensive list of cell types and how they are defined for even the simplest mammalian neuronal circuit. Moreover, synapse resolution connectomics has focused almost entirely on chemical synapses and ignored electrical synapses formed by gap junctions, which are thought to be crucial for network synchrony and oscillations. Recent advances in automated sample collection and imaging for transmission electron microscopy (TEM) and molecular genetic tools have allowed us to begin detailed mapping of neural network anatomy. Development of intermediate voltage TEMs has demonstrated the ability to volumetrically image through thick (~1 μm) sections with high resolution tomography. Here, we propose combining automated sample collection and imaging using GridTape, with electron microscopic tomography (EMT) and conical beam procession “VortexBeam” imaging. This new combination of approaches will increase both the resolution and throughput of connectomics, while decreasing the number of sections that need to be collected and acquired. The cerebellum is an ideal system to validate our novel platform as part of a systematic effort to reverse engineer a functional neural circuit that is involved in motor control and social behavior. Its basic structure is well ordered, relatively simple and sufficiently described to have inspired computational models that capture aspects of cerebellar function. However, even the most advanced models are limited by an incomplete characterization of the cell types and connectivity within the cerebellum. Here, we propose to validate our next-generation EMT platforms and characterize long-range, local, and gap junctional connectivity in the cerebellum. We will combine tools recently developed in our labs to a circuit that offers the advantages of relative simplicity and a strong starting foundation. These studies will allow us to understand principles of cerebellar circuit organization and may help us determine the role of specific circuit elements in neurodegenerative disorders.
项目概要/摘要 神经科学的一个基本目标是了解神经网络功能如何从电路结构中产生。 然而,大多数大脑网络的巨大复杂性一直是进步的重大障碍。我们不 拥有任何哺乳动物局部电路的综合接线图,更不用说整个大脑了。我们还没有 拥有完整的细胞类型列表以及如何定义最简单的哺乳动物神经元 电路。此外,突触解析连接组学几乎完全集中于化学突触和 忽略了间隙连接形成的电突触,间隙连接被认为对于网络同步至关重要 振荡。透射电子显微镜自动样品采集和成像的最新进展 (TEM)和分子遗传学工具使我们能够开始详细绘制神经网络解剖图。 中压 TEM 的开发已经证明了通过厚层进行体积成像的能力 (~1 μm) 高分辨率断层扫描切片。在这里,我们建议结合自动化样本收集 并使用 GridTape 进行成像,并采用电子显微断层扫描 (EMT) 和锥形束处理 “VortexBeam”成像。这种新的方法组合将提高分辨率和吞吐量 连接组学,同时减少需要收集和获取的切片数量。小脑 是一个理想的系统,用于验证我们的新颖平台,作为对功能进行逆向工程的系统工作的一部分 参与运动控制和社会行为的神经回路。其基本结构较为有序, 简单且描述充分,激发了捕捉小脑各个方面的计算模型 功能。然而,即使是最先进的模型也受到细胞表征不完整的限制 小脑内的类型和连接性。在这里,我们建议验证我们的下一代 EMT 平台 并表征小脑中的远程、局部和间隙连接连接。我们将结合工具 我们的实验室最近开发了一种电路,具有相对简单和启动能力强的优点 基础。这些研究将使我们了解小脑回路组织的原理,并可能有助于 我们确定特定电路元件在神经退行性疾病中的作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark H Ellisman其他文献

Mark H Ellisman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark H Ellisman', 18)}}的其他基金

200keV, Energy Filtered, Intermediate-High Voltage Transmission Electron Microscope(IVEM)"
200keV、能量过滤、中高压透射电子显微镜(IVEM)"
  • 批准号:
    10642585
  • 财政年份:
    2023
  • 资助金额:
    $ 291.62万
  • 项目类别:
Reversing Microglial Inflammarafts and Mitochondrial Dysfunction in Alzheimer's Disease
逆转阿尔茨海默病中的小胶质细胞炎症和线粒体功能障碍
  • 批准号:
    10607455
  • 财政年份:
    2022
  • 资助金额:
    $ 291.62万
  • 项目类别:
National Center for Microscopy and Imaging Research: A BRAIN Technology Integration and Dissemination Resource
国家显微镜和成像研究中心:大脑技术集成和传播资源
  • 批准号:
    10334513
  • 财政年份:
    2021
  • 资助金额:
    $ 291.62万
  • 项目类别:
National Center for Microscopy and Imaging Research: A BRAIN Technology Integration and Dissemination Resource
国家显微镜和成像研究中心:大脑技术集成和传播资源
  • 批准号:
    10544010
  • 财政年份:
    2021
  • 资助金额:
    $ 291.62万
  • 项目类别:
National Center for Microscopy and Imaging Research: A BRAIN Technology Integration and Dissemination Resource
国家显微镜和成像研究中心:大脑技术集成和传播资源
  • 批准号:
    10116087
  • 财政年份:
    2021
  • 资助金额:
    $ 291.62万
  • 项目类别:
The National Center for Microscopy and Imaging Research, a Community-wide Scientific Resource
国家显微镜和成像研究中心,社区范围的科学资源
  • 批准号:
    10399337
  • 财政年份:
    2020
  • 资助金额:
    $ 291.62万
  • 项目类别:
Advancing Multi-Color EM via Direct Detector-enabled 4D-STEM
通过支持直接检测器的 4D-STEM 推进多色 EM
  • 批准号:
    10031737
  • 财政年份:
    2020
  • 资助金额:
    $ 291.62万
  • 项目类别:
Advancing Multi-Color EM via Direct Detector-enabled 4D-STEM
通过支持直接检测器的 4D-STEM 推进多色 EM
  • 批准号:
    10795540
  • 财政年份:
    2020
  • 资助金额:
    $ 291.62万
  • 项目类别:
The National Center for Microscopy and Imaging Research, a Community-wide Scientific Resource
国家显微镜和成像研究中心,社区范围的科学资源
  • 批准号:
    10212509
  • 财政年份:
    2020
  • 资助金额:
    $ 291.62万
  • 项目类别:
The National Center for Microscopy and Imaging Research, a Community-wide Scientific Resource
国家显微镜和成像研究中心,社区范围的科学资源
  • 批准号:
    10400847
  • 财政年份:
    2020
  • 资助金额:
    $ 291.62万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 291.62万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 291.62万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 291.62万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 291.62万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 291.62万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 291.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 291.62万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 291.62万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 291.62万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 291.62万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了