Using computer vision and deep learning to measure worker kinematics

使用计算机视觉和深度学习来测量工人运动学

基本信息

  • 批准号:
    10493051
  • 负责人:
  • 金额:
    $ 19.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-30 至 2023-09-29
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Musculoskeletal disorders (MSDs) are among the most frequent and costly nonfatal work-related injuries and illnesses across virtually all US industry sectors. Responding to the clear need emphasized in the NIOSH National Research Agenda for Musculoskeletal Health to develop improved methods of estimating exposure to occupational risk factors for MSDs, this research will validate new software for measuring worker postures and movements using only standard video as input. The software leverages major advances in computer vision and machine learning sciences that only recently have enabled measurement of human postures in three dimensional space using standard two dimensional video or image sources. Ultimately, one of our long-term goals is to develop applications for occupational safety and health practitioners analogous to widely-used direct reading instruments for assessing exposure to occupational hazards (e.g., sound pressure meters and gas monitors). In this initial R21, we propose to validate the postural data our software produces (Aim 1) and examine agreement between postural information output by our software and that output by more traditional (but time-consuming) observation-based video analyses (Aim 2). In Aim 1, participants will perform a repetitive, arm-intensive task involving reaching to and manipulating knobs mounted to a fixture located in front of the body. We will then estimate the accuracy of neck, shoulder, elbow, wrist, trunk, and knee angular displacements (i.e., posture over time) measured by our software, compared to data simultaneously collected using an optical motion capture system. Experimental variables include the range of motion required of participants to perform the task and the configuration of the camera used to record video of participants during the task. Results from Aim 1 will provide critical information about the performance of our new software needed to inform best-practices for implementation in field-capable exposure assessment applications. In Aim 2, we will reanalyze >1000 workplace videos obtained during the course of a previous prospective study of upper extremity MSDs among manufacturing workers. Analyses are proposed to assess the inter-method agreement between automated video analyses (our software) and analyses completed by trained specialist observers during the course of the prospective study. Results will provide evidence that our software can quantify occupational exposure to MSD risk factors at a fraction of time needed to perform commonly used observation- based analyses. The reanalysis of existing workplace videos can also open new pathways to explore associations between occupational exposures to MSD risk factors and incident health outcomes in future studies.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nathan B Fethke其他文献

Nathan B Fethke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nathan B Fethke', 18)}}的其他基金

Using computer vision and deep learning to measure worker kinematics
使用计算机视觉和深度学习来测量工人运动学
  • 批准号:
    10214134
  • 财政年份:
    2021
  • 资助金额:
    $ 19.63万
  • 项目类别:

相似国自然基金

基于多重计算全息片(Computer-generated Hologram,CGH)的光学非球面干涉绝对检验方法研究
  • 批准号:
    62375132
  • 批准年份:
    2023
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
Journal of Computer Science and Technology
  • 批准号:
    61224001
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
普适计算环境下基于交互迁移与协作的智能人机交互研究
  • 批准号:
    61003219
  • 批准年份:
    2010
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目
Journal of Computer Science and Technology
  • 批准号:
    61040017
  • 批准年份:
    2010
  • 资助金额:
    4.0 万元
  • 项目类别:
    专项基金项目
基于磷酸二酯酶IV结构的抑制剂的设计与动态组合合成
  • 批准号:
    30500633
  • 批准年份:
    2005
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RII Track-4:@NASA: Automating Character Extraction for Taxonomic Species Descriptions Using Neural Networks, Transformer, and Computer Vision Signal Processing Architectures
RII Track-4:@NASA:使用神经网络、变压器和计算机视觉信号处理架构自动提取分类物种描述的字符
  • 批准号:
    2327168
  • 财政年份:
    2024
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Standard Grant
Helping Doctors Doctor: Using AI to Automate Documentation and "De-Autonomate" Health Care
帮助医生医生:使用人工智能实现文档自动化和医疗保健“去自动化”
  • 批准号:
    10701364
  • 财政年份:
    2023
  • 资助金额:
    $ 19.63万
  • 项目类别:
Developing computer vision algorithms for ferrous scrap and secondary materials grading using images and videos as input, incorporating them into digital passports for increasing UK usage of domestically generated scrap.
使用图像和视频作为输入,开发用于黑色金属废料和二次材料分级的计算机视觉算法,并将其纳入数字护照中,以增加英国对国内产生的废料的使用。
  • 批准号:
    10076415
  • 财政年份:
    2023
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Grant for R&D
Point-of-care prognostic modeling of PTSD risk after traumatic event exposure using digital biomarkers and clinical data from electronic health records in the emergency department setting (PREDICT)
使用数字生物标志物和急诊科电子健康记录中的临床数据对创伤事件暴露后的 PTSD 风险进行护理点预后建模 (PREDICT)
  • 批准号:
    10884738
  • 财政年份:
    2023
  • 资助金额:
    $ 19.63万
  • 项目类别:
Dissecting and Predicting Lethal Prostate Cancer using Biologically Informed Artificial Intelligence
使用生物学信息人工智能剖析和预测致命性前列腺癌
  • 批准号:
    10628274
  • 财政年份:
    2023
  • 资助金额:
    $ 19.63万
  • 项目类别:
Implementing and Scaling the STEADI Fall Prevention Algorithm Using a Conversational Relational Agent for Community-Dwelling Older Adults with and without Mild Cognitive Impairment (MCI).
使用对话关系代理为社区居住的患有或不患有轻度认知障碍 (MCI) 的老年人实施和扩展 STEADI 跌倒预防算法。
  • 批准号:
    10822816
  • 财政年份:
    2023
  • 资助金额:
    $ 19.63万
  • 项目类别:
Augmented Reality Personalized Motion Tracking Assessment and Improvement Technology for Fall Prevention for the Spanish Speaking Hispanic/Latino Population in a Community Setting Using Mobile Phone
增强现实个性化运动跟踪评估和改进技术,用于社区环境中使用手机的西班牙语西班牙裔/拉丁裔人群的跌倒预防
  • 批准号:
    10601526
  • 财政年份:
    2023
  • 资助金额:
    $ 19.63万
  • 项目类别:
Enhancing robotic head and neck surgical skills using stimulated simulation
使用刺激模拟增强机器人头颈手术技能
  • 批准号:
    10586874
  • 财政年份:
    2023
  • 资助金额:
    $ 19.63万
  • 项目类别:
Developing a low cost, highly compact holographic imaging based microfluidic cell sorting system using 3D printing
使用 3D 打印开发低成本、高度紧凑的基于全息成像的微流体细胞分选系统
  • 批准号:
    10575747
  • 财政年份:
    2023
  • 资助金额:
    $ 19.63万
  • 项目类别:
Using Computer Vision Tools To Analyse Human Motion to Study and Manage Parkinson's Disease
使用计算机视觉工具分析人体运动来研究和治疗帕金森病
  • 批准号:
    2733949
  • 财政年份:
    2022
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了