STRATEGIES FOR CLINICAL ONCOLOGY IMAGING WITH 3D PET
3D PET 临床肿瘤成像策略
基本信息
- 批准号:2895929
- 负责人:
- 金额:$ 12.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-09-30 至 2002-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (Adapted from Applicant's Abstract): The applicants proposed to
develop, implement, and evaluate algorithms that will significantly improve
image quality for clinical PET oncology imaging, an din particular for a
dual PET/CT scanner under development at our institution. The motivation
for this work arises from the unique sensitivity of positron emission
tomography (PET) to detect increased tracer uptake associated with abnormal
tumor metabolism before structural abnormalities demonstrated by CT or MRI
become apparent. This ability is being increasingly used in the
identification of disease remote from the primary tumor site by performing
whole body scanning, where the patient bed is stepped through the scanner.
The diagnostic utility of PET oncology imaging, however, is often limited in
practice by low tracer uptake and low data collection rates, resulting in
images with high levels of statistical noise. Whole body scanning, in
particular, is constrained to short imaging times at each bed position in
order to maintain a total scan duration that is acceptable to patients
suffering from serious disease, leading to increased statistical noise and
further degradation in diagnostic utility. The applicants suggest that
these limitations on image quality can be overcome by taking advantage of
two factors: the use of higher sensitivity volume-imaging (3-D imaging) to
increase intrinsic scanner sensitivity, and the use of true 3-D statistical
reconstruction methods that reduce noise propagation and include a priori
information on image smoothness. In addition, the applicants have the
opportunity to include accurately registered CT information from the new
PET/CT scanner to control the local smoothing information to further improve
image quality. There are challenging problems in the development of 3-D
statistical reconstruction methods and in the incorporation of CT data. The
solutions proposed in this work will initially be evaluated with simulation
and phantom studies, and subsequently with clinical data from the current
PET oncology program, using observer studies and biopsy results. This
overall approach of reducing image noise to improve the discrimination of
benign and malignant lesions within the body is needed to realize the full
potential of PET oncology imaging and maximized its impact on patient
management.
描述(改编自申请人摘要):申请人提出,
开发,实施和评估算法,将显着提高
用于临床PET肿瘤学成像图像质量,
双PET/CT扫描仪正在开发中。 的动机
因为这项工作源于正电子发射的独特敏感性
断层扫描(PET),以检测与异常
CT或MRI显示结构异常前的肿瘤代谢
变得明显。 这种能力越来越多地用于
通过进行远离原发肿瘤部位的疾病的鉴定,
全身扫描,其中患者床步进通过扫描仪。
然而,PET肿瘤学成像的诊断效用通常受限于
低示踪剂吸收和低数据收集率的做法,导致
具有高水平统计噪声的图像。 全身扫描,在
特别地,在本发明的实施例中,
为了维持患者可接受的总扫描持续时间
患有严重疾病,导致统计噪音增加,
进一步降低诊断效用。 申请人建议,
这些对图像质量的限制可以通过利用
两个因素:使用更高灵敏度的体积成像(3-D成像),
提高扫描仪的固有灵敏度,并使用真正的三维统计
减少噪声传播并包括先验信息的重建方法
图像平滑度信息。 此外,申请人须具备
有机会纳入新的准确配准CT信息
PET/CT扫描仪控制局部平滑信息进一步提高
图像质量 三维技术的发展面临着诸多挑战
统计重建方法和CT数据的结合。 的
在这项工作中提出的解决方案,最初将评估与模拟
和体模研究,以及随后的临床数据,
PET肿瘤学计划,使用观察者研究和活检结果。 这
降低图像噪声以提高
体内的良性和恶性病变是需要实现充分的
PET肿瘤成像的潜力,并最大限度地发挥其对患者的影响
管理
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul E. Kinahan其他文献
Multiparametric Quantitative Imaging in Risk Prediction: Recommendations for Data Acquisition, Technical Performance Assessment, and Model Development and Validation
多参数定量成像在风险预测中的应用:数据采集、技术性能评估以及模型开发和验证的建议
- DOI:
10.1016/j.acra.2022.09.018 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:3.900
- 作者:
Erich P. Huang;Gene Pennello;Nandita M. deSouza;Xiaofeng Wang;Andrew J. Buckler;Paul E. Kinahan;Huiman X. Barnhart;Jana G. Delfino;Timothy J. Hall;David L. Raunig;Alexander R. Guimaraes;Nancy A. Obuchowski - 通讯作者:
Nancy A. Obuchowski
Characterization of PET/CT images using texture analysis: the past, the present… any future?
- DOI:
10.1007/s00259-016-3427-0 - 发表时间:
2016-06-06 - 期刊:
- 影响因子:7.600
- 作者:
Mathieu Hatt;Florent Tixier;Larry Pierce;Paul E. Kinahan;Catherine Cheze Le Rest;Dimitris Visvikis - 通讯作者:
Dimitris Visvikis
ブリッジ検出器によるDual-Ring OpenPETの画質改善効果の検討
使用桥检测器检查 Dual-Ring OpenPET 的图像质量改善效果
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
田島英朗;山谷泰賀;Paul E. Kinahan - 通讯作者:
Paul E. Kinahan
Semiautomated Extraction of Research Topics and Trends From National Cancer Institute Funding in Radiological Sciences From 2000 to 2020
2000年至2020年从美国国家癌症研究所放射科学资助中半自动提取研究主题和趋势
- DOI:
10.1016/j.ijrobp.2025.01.009 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:6.500
- 作者:
Mark H. Nguyen;Peter G. Beidler;Joseph Tsai;August Anderson;Daniel Chen;Paul E. Kinahan;John Kang - 通讯作者:
John Kang
Multimodality molecular imaging of the lung
- DOI:
10.1007/s40336-014-0084-9 - 发表时间:
2014-10-16 - 期刊:
- 影响因子:1.600
- 作者:
Delphine L. Chen;Paul E. Kinahan - 通讯作者:
Paul E. Kinahan
Paul E. Kinahan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul E. Kinahan', 18)}}的其他基金
Characterizing, optimizing, and harmonizing cancer detection with PET imaging
通过 PET 成像表征、优化和协调癌症检测
- 批准号:
10579947 - 财政年份:2022
- 资助金额:
$ 12.48万 - 项目类别:
Characterizing, optimizing, and harmonizing cancer detection with PET imaging
通过 PET 成像表征、优化和协调癌症检测
- 批准号:
10363601 - 财政年份:2022
- 资助金额:
$ 12.48万 - 项目类别:
Calibrated Methods for Quantitative PET/CT Imaging
定量 PET/CT 成像的校准方法
- 批准号:
8311868 - 财政年份:2012
- 资助金额:
$ 12.48万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8657576 - 财政年份:2011
- 资助金额:
$ 12.48万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8531689 - 财政年份:2011
- 资助金额:
$ 12.48万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8336825 - 财政年份:2011
- 资助金额:
$ 12.48万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8230446 - 财政年份:2011
- 资助金额:
$ 12.48万 - 项目类别:














{{item.name}}会员




