Systems analysis of the early phase of yeast bud formation using a combined experimental and theoretical approach
使用实验和理论相结合的方法对酵母芽形成的早期阶段进行系统分析
基本信息
- 批准号:BB/G001855/1
- 负责人:
- 金额:$ 35.46万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ability of biological cells to actively respond to their environment is one of the most fundamental properties of the living matter. A class of such responses, termed polarization, results in the formation of a detectable 'head-to-tail' axis within the cell. For example, a pulse of growth-stimulating chemicals may cause an initially symmetric cell to undergo a morphological transformation by means of which it acquires a flat and wide front end and a trailing narrow back end. Once polarized in such a way, the cell can persistently migrate towards the source of the inducing chemical. The cellular polarity status is intimately related to the health of the cell. Loss of the normal epithelial polarity of cells that form the lining of internal organs, such as intestine, ovaries or kidneys, will inevitably cause cellular proliferation. Such an overgrowth may become a malignant tumor. If a normally non-polar cancer cell manages to acquire the migratory-type polarity, it becomes motile and may cause the spread of cancer through metastases. The understanding of the mechanisms that underlie the polarity establishment is therefore highly important for the biology in general and the health research in particular. The major question of cell polarity that still baffles experimental and theoretical biologists is: What is the nature of the cellular compass? This 'device' is apparently located on the cellular membrane where it can perceive the external directional cues and then signal to the cellular insides. The latter is achieved by physically marking a membrane domain that is destined to become 'front' or 'back' with the specific protein complexes. The details may vary from one cell type to another, but the principle of using self-assembling clusters of protein complexes to differentiate specific areas from the rest of the cell membrane appears to be universal. Striving to understand these complex processes, my group uses mathematical and computational modeling as research tools. To quantitatively characterize the underlying molecular mechanisms, we recently developed a model that describes the local chemical kinetics within the protein complexes that form these clusters. Our model shed light on the biochemical machinery that underpins the fast assembly and disassembly of such complexes. To explain how the entire clusters emerge in response to the extracellular stimuli, we have built a cell-scale model that together with reaction dynamics also incorporates the transport of molecules on the cell membrane and between the membrane and the cytoplasm. This is a considerably more complex endeavor and the careful choice of a specific system is crucial for its success. Based on the availability of experimental data as the major criterion, I selected the formation of baking yeast bud. Individual molecules and interactions that contribute to the emergence of yeast bud had been carefully described in the literature but the overall understanding of this complex developmental process is still lacking. My systems modeling will bridge this gap in our knowledge by bringing individual elements together to form the complete picture. Our preliminary results indicate that a nonlinear process known in chemistry as the autocatalysis is responsible for the creation of the protein cluster that will eventually develop into the fully grown yeast bud. More work, both experimental and theoretical, is necessary before our model can generate concrete experimentally testable predictions. This work will be done in a close collaboration with the internationally renowned yeast biologists, Profs. Erfei Bi of the University of Pennsylvania and Daniel Lew of Duke University. Their experimental results will be used by us to further improve the model while our predictions will inform their experiments. This project will serve as an example of a systems biology approach to complex biological problems to be followed by other biomedical researchers.
生物细胞主动响应环境的能力是生物最基本的特性之一。一类这样的反应,称为极化,导致在细胞内形成可检测的“头到尾”轴。例如,刺激生长的化学物质的脉冲可以使最初对称的细胞经历形态学转变,通过这种形态学转变,细胞获得平坦而宽的前端和尾随的狭窄后端。一旦以这种方式极化,细胞可以持续地向诱导化学物质的来源迁移。细胞极性状态与细胞的健康密切相关。形成内部器官(例如肠、卵巢或肾脏)的衬里的细胞的正常上皮极性的丧失将不可避免地引起细胞增殖。这种过度生长可能成为恶性肿瘤。如果一个正常的非极性癌细胞设法获得迁移型极性,它变得能动,并可能导致癌症通过转移扩散。因此,了解极性建立的机制对于一般生物学和特别是健康研究非常重要。细胞极性的主要问题仍然困扰着实验和理论生物学家:细胞罗盘的本质是什么?这个“装置”显然位于细胞膜上,在那里它可以感知外部方向线索,然后向细胞内部发出信号。后者是通过物理标记膜结构域来实现的,该膜结构域注定要与特定的蛋白质复合物一起成为“前”或“后”。细节可能因细胞类型而异,但使用蛋白质复合物的自组装簇来区分特定区域与细胞膜的其余部分的原理似乎是通用的。为了努力理解这些复杂的过程,我的团队使用数学和计算建模作为研究工具。为了定量表征潜在的分子机制,我们最近开发了一种模型,描述了形成这些簇的蛋白质复合物内的局部化学动力学。我们的模型揭示了支持这种复合物快速组装和拆卸的生化机制。为了解释整个簇如何响应细胞外刺激而出现,我们建立了一个细胞尺度模型,该模型与反应动力学一起还结合了细胞膜上以及膜和细胞质之间的分子运输。这是一项相当复杂的奋进,仔细选择特定的系统对其成功至关重要。以实验数据的可获得性为主要标准,选择了形成焙烤酵母芽的方法。在文献中已经仔细描述了有助于酵母芽出现的单个分子和相互作用,但是仍然缺乏对这个复杂发育过程的整体理解。我的系统建模将弥合我们知识中的这一差距,将各个元素结合在一起形成完整的画面。我们的初步结果表明,一个在化学上被称为自催化的非线性过程负责蛋白质簇的产生,该蛋白质簇最终将发育成完全生长的酵母芽。在我们的模型能够产生具体的实验可检验的预测之前,还需要更多的实验和理论工作。这项工作将与国际知名的酵母生物学家,教授密切合作。宾夕法尼亚大学的Erfei Bi和杜克大学的丹尼尔·卢。他们的实验结果将被我们用来进一步改进模型,而我们的预测将为他们的实验提供信息。这个项目将作为一个系统生物学方法来解决复杂的生物学问题的一个例子,供其他生物医学研究人员参考。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Domain formation on curved membranes: phase separation or Turing patterns?
弯曲膜上的域形成:相分离或图灵模式?
- DOI:10.1039/c3sm50650a
- 发表时间:2013
- 期刊:
- 影响因子:3.4
- 作者:Orlandini E
- 通讯作者:Orlandini E
Curvature-driven positioning of Turing patterns in phase-separating curved membranes.
相分离弯曲膜中图灵图案的曲率驱动定位。
- DOI:10.1039/c6sm00340k
- 发表时间:2016
- 期刊:
- 影响因子:3.4
- 作者:Vandin G
- 通讯作者:Vandin G
A common mechanism for protein cluster formation
蛋白质簇形成的常见机制
- DOI:10.4161/sgtp.2.3.15902
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Goryachev A
- 通讯作者:Goryachev A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Goryachev其他文献
Andrew Goryachev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Goryachev', 18)}}的其他基金
20-BBSRC/NSF-BIO: Synthetic Control of Pattern Formation and Morphogenesis in a Purposefully Rewired Vertebrate Cell
20-BBSRC/NSF-BIO:有目的地重新连接的脊椎动物细胞中模式形成和形态发生的综合控制
- 批准号:
BB/W013614/1 - 财政年份:2022
- 资助金额:
$ 35.46万 - 项目类别:
Research Grant
15 NSFBIO: Excitocell: A rewired eukaryotic cell model for the analysis and design of cellular morphogenesis
15 NSFBIO:Excitocell:用于分析和设计细胞形态发生的重新连接的真核细胞模型
- 批准号:
BB/P01190X/1 - 财政年份:2017
- 资助金额:
$ 35.46万 - 项目类别:
Research Grant
Cortical excitability as a mechanism for epithelial barrier maintenance: A joint experiment-theory systems approach
皮质兴奋性作为上皮屏障维持机制:联合实验理论系统方法
- 批准号:
BB/P006507/1 - 财政年份:2017
- 资助金额:
$ 35.46万 - 项目类别:
Research Grant
Systems Analysis of G-protein dynamics in D. discoideum; a pilot study using novel 3D microscopy computational modelling and micromanipulation
D. discoideum 中 G 蛋白动力学的系统分析;
- 批准号:
BB/H531494/1 - 财政年份:2010
- 资助金额:
$ 35.46万 - 项目类别:
Research Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
利用全基因组关联分析和QTL-seq发掘花生白绢病抗性分子标记
- 批准号:31971981
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
基于SERS纳米标签和光子晶体的单细胞Western Blot定量分析技术研究
- 批准号:31900571
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
利用多个实验群体解析猪保幼带形成及其自然消褪的遗传机制
- 批准号:31972542
- 批准年份:2019
- 资助金额:57.0 万元
- 项目类别:面上项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
多目标诉求下我国交通节能减排市场导向的政策组合选择研究
- 批准号:71473155
- 批准年份:2014
- 资助金额:60.0 万元
- 项目类别:面上项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于物质流分析的中国石油资源流动过程及碳效应研究
- 批准号:41101116
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Systems Genetics of Vascular Smooth Muscle Phenotypes
血管平滑肌表型的系统遗传学
- 批准号:
10771623 - 财政年份:2023
- 资助金额:
$ 35.46万 - 项目类别:
Engineering model-based systems to monitor and steer subclonal dynamics
基于工程模型的系统来监测和引导亚克隆动态
- 批准号:
10633383 - 财政年份:2023
- 资助金额:
$ 35.46万 - 项目类别:
Implementing and Evaluating the Cancer Tracking System (CATSystem): A systems level intervention to improve Cervical Cancer screening, treatment referral and follow up in Kenya
实施和评估癌症追踪系统 (CATSystem):系统级干预措施,旨在改善肯尼亚的宫颈癌筛查、治疗转诊和随访
- 批准号:
10762689 - 财政年份:2023
- 资助金额:
$ 35.46万 - 项目类别:
Systems Vaccinology Approaches to Define and Predict Immunity in Response to Nontyphoidal Salmonella Conjugate Vaccines
定义和预测非伤寒沙门氏菌结合疫苗免疫反应的系统疫苗学方法
- 批准号:
10428968 - 财政年份:2022
- 资助金额:
$ 35.46万 - 项目类别:
Wearable ultrasound systems and software for assessment of obstructive sleep apnea
用于评估阻塞性睡眠呼吸暂停的可穿戴超声系统和软件
- 批准号:
10484666 - 财政年份:2022
- 资助金额:
$ 35.46万 - 项目类别:
Core-based scientist specializing in high throughput screening for early drug discovery, target identification and systems biology analysis of cancer
专注于癌症早期药物发现、靶标识别和系统生物学分析的高通量筛选的核心科学家
- 批准号:
10469395 - 财政年份:2022
- 资助金额:
$ 35.46万 - 项目类别:
Systems Vaccinology Approaches to Define and Predict Immunity in Response to Nontyphoidal Salmonella Conjugate Vaccines
定义和预测非伤寒沙门氏菌结合疫苗免疫反应的系统疫苗学方法
- 批准号:
10559619 - 财政年份:2022
- 资助金额:
$ 35.46万 - 项目类别:
Core-based scientist specializing in high throughput screening for early drug discovery, target identification and systems biology analysis of cancer
专注于癌症早期药物发现、靶标识别和系统生物学分析的高通量筛选的核心科学家
- 批准号:
10545491 - 财政年份:2022
- 资助金额:
$ 35.46万 - 项目类别:
Systems Biology of Early Atopy (SUNBEAM) Analysis and Bioinformatics Center
早期特应性系统生物学(SUNBEAM)分析和生物信息学中心
- 批准号:
10573523 - 财政年份:2022
- 资助金额:
$ 35.46万 - 项目类别: