Integrated in silico prediction of protein interaction motifs using interactome networks and high-resolution 3-dimensional structures

使用相互作用组网络和高分辨率 3 维结构对蛋白质相互作用基序进行计算机集成预测

基本信息

  • 批准号:
    BB/I006230/1
  • 负责人:
  • 金额:
    $ 36.04万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

This project aims to identify sites on proteins that are critical for their interactions with other proteins. Many protein-protein interactions are mediated by Short Linear Motifs (SLiMs): short stretches of proteins (5-15 amino acids long), of which only a few positions are critical to function. These motifs are vital for biological processes of fundamental importance, such as signalling pathways and targeting proteins to the correct part of a cell. The primary objective of this project is to integrate a number of leading computational techniques to predict novel SLiMs and, in so doing, add crucial detail to protein-protein interaction networks. This will generate a valuable resource of potential SLiMs, including defined occurrences and interactions. Given the great promise SLiM-mediated interactions hold as future therapeutic targets, this resource could be a potential gold-mine for the pharma industry and future drug design. A crucial part of any predictive bioinformatics analysis is the rediscovery of previously known results. The Eukaryotic Linear Motif (ELM) database provides a rich resource of known eukaryotic motifs and these will form the basis of annotating known SLiMs that are (re)discovered during the course of the investigation. Data generated during this project will, in turn, be fed back into the ELM resource to improve existing ELM annotation and, potentially, provide new annotated occurrences of known motifs. As well as being useful for further investigation of specific protein-protein interactions, these predictions/annotations will be of interest to the wider scientific community who are interested in understanding the fundamental principles of how proteins interact with each other. To generate the SLiM predictions, this project will put together cutting-edge tools for two distinct but related activities: (1) predicting regions of proteins involved in SLiM-mediated interactions from 3D structures of proteins; (2) identifying over-represented recurring sequence patterns from proteins that all share a common interaction partner. First, structural features will be used to identify candidate regions in specific proteins. SLiMs typically interact with larger, globular domains in their partner protein, and structural signatures of such 'domain-motif interactions' can be used to highlight possible motif regions. These regions will then be compared to other proteins known to interact with the same protein as the candidate. Currently, the most successful approaches for this explicitly use a model of convergent evolution for detection. Under this model, the common motif identified must be shared by sequences that have no other detectable sequence similarity. Previously, we developed the most successful of these tools on benchmarking data, SLiMFinder, which accounts for both the evolutionary relationships found between input proteins and the total motif space being searched to estimate the statistical significance of over-represented motifs. For this project, an extension of SLiMFinder will be used that takes advantage of the fact that the 3D methods will have identified a specific short region on one of the proteins. This extra information makes the method much more sensitive. These results will be of great interest to anyone trying to understand the molecular basis of protein-protein interactions and signalling pathways. During the course of the project, the methods used will be further developed and validated, providing useful tools for future investigations. Open source software and webserver implementations will be made available to facilitate further application. This will make these methods available to bench scientists studying specific proteins and interactions.
该项目旨在确定蛋白质上与其他蛋白质相互作用的关键位点。许多蛋白质-蛋白质相互作用由短线性基序(SLiM)介导:短的蛋白质片段(5-15个氨基酸长),其中只有少数位置对功能至关重要。这些基序对于具有根本重要性的生物过程至关重要,例如信号传导途径和将蛋白质靶向细胞的正确部分。该项目的主要目标是整合一些领先的计算技术来预测新型SLiM,并在此过程中为蛋白质-蛋白质相互作用网络添加关键细节。这将生成潜在SLiM的宝贵资源,包括定义的事件和相互作用。鉴于SLiM介导的相互作用作为未来治疗靶点的巨大前景,这种资源可能是制药行业和未来药物设计的潜在金矿。任何预测性生物信息学分析的关键部分都是重新发现先前已知的结果。真核线性基序(ELM)数据库提供了丰富的资源,已知的真核生物基序,这些将形成的基础上注释已知的SLiM是(重新)发现的过程中的调查。在这个项目中产生的数据将反过来被反馈到ELM资源中,以改进现有的ELM注释,并可能提供已知图案的新注释。除了对进一步研究特定的蛋白质-蛋白质相互作用有用之外,这些预测/注释将对更广泛的科学界感兴趣,他们有兴趣了解蛋白质如何相互作用的基本原理。为了生成SLiM预测,该项目将为两个不同但相关的活动整合尖端工具:(1)从蛋白质的3D结构预测参与SLiM介导的相互作用的蛋白质区域;(2)从共享共同相互作用伙伴的蛋白质中识别过度代表的重复序列模式。首先,结构特征将用于识别特定蛋白质中的候选区域。SLiM通常与其伴侣蛋白中较大的球状结构域相互作用,这种“结构域-基序相互作用”的结构特征可用于突出可能的基序区域。然后将这些区域与已知与候选蛋白质相同的蛋白质相互作用的其他蛋白质进行比较。目前,最成功的方法是明确使用收敛进化模型进行检测。在这种模式下,共同的基序必须确定共享的序列,没有其他可检测的序列相似性。此前,我们在基准数据上开发了这些工具中最成功的工具SLiMFinder,它解释了输入蛋白质之间发现的进化关系和正在搜索的总基序空间,以估计过度代表基序的统计显著性。对于该项目,将使用SLiMSTK的扩展,该扩展利用了3D方法将识别其中一种蛋白质上的特定短区域的事实。这些额外的信息使该方法更加敏感。这些结果对于任何试图了解蛋白质-蛋白质相互作用和信号通路的分子基础的人来说都是非常有趣的。在项目执行过程中,将进一步发展和验证所使用的方法,为今后的调查提供有用的工具。将提供开放源码软件和网络服务器,以便利进一步的应用。这将使这些方法可用于研究特定蛋白质和相互作用的实验室科学家。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks.
  • DOI:
    10.12688/f1000research.6773.1
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Olorin E;O'Brien KT;Palopoli N;Pérez-Bercoff Å;Shields DC;Edwards RJ
  • 通讯作者:
    Edwards RJ
Referee report. For: SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks [v1; approved 1, http://f1000r.es/5m5]
裁判报告。
  • DOI:
    10.5256/f1000research.7277.r9827
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stelzl U
  • 通讯作者:
    Stelzl U
Interactome-wide prediction of short, disordered protein interaction motifs in humans
  • DOI:
    10.1039/c1mb05212h
  • 发表时间:
    2012-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Edwards, Richard J.;Davey, Norman E.;Shields, Denis C.
  • 通讯作者:
    Shields, Denis C.
SLiMPrints: conservation-based discovery of functional motif fingerprints in intrinsically disordered protein regions.
  • DOI:
    10.1093/nar/gks854
  • 发表时间:
    2012-11
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Davey NE;Cowan JL;Shields DC;Gibson TJ;Coldwell MJ;Edwards RJ
  • 通讯作者:
    Edwards RJ
QSLiMFinder: improved short linear motif prediction using specific query protein data.
  • DOI:
    10.1093/bioinformatics/btv155
  • 发表时间:
    2015-07-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Palopoli N;Lythgow KT;Edwards RJ
  • 通讯作者:
    Edwards RJ
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Edwards其他文献

HIV/AIDS and the South African State: Sovereignty and the Responsibility to Respond
  • DOI:
    10.1111/1753-6405.12336
  • 发表时间:
    2015-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nick Wilson;George Thomson;Richard Edwards
  • 通讯作者:
    Richard Edwards
Correction: Improving on estimates of the potential relative harm to health from using modern ENDS (vaping) compared to tobacco smoking
  • DOI:
    10.1186/s12889-022-13983-3
  • 发表时间:
    2022-09-21
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Nick Wilson;Jennifer A. Summers;Driss Ait Ouakrim;Janet Hoek;Richard Edwards;Tony Blakely
  • 通讯作者:
    Tony Blakely
9. England and Wales
  • DOI:
    10.1007/bf00597963
  • 发表时间:
    1996-01-01
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Peter Raggatt;Richard Edwards
  • 通讯作者:
    Richard Edwards
Simulation of self-assembly and lyotropic liquid crystal phases in model discotic solutions
盘状溶液模型中自组装和溶致液晶相的模拟
  • DOI:
  • 发表时间:
    1995
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard Edwards;J. Henderson;R. Pinning
  • 通讯作者:
    R. Pinning
Addressing barriers and identifying facilitators to support informed consent and recruitment in the Cavernous malformations A Randomised Effectiveness (CARE) pilot phase trial: insights from the integrated QuinteT recruitment intervention (QRI)
解决障碍并确定促进因素,以支持海绵状血管畸形的知情同意和招募随机有效性 (CARE) 试点阶段试验:来自综合 QuinteT 招募干预 (QRI) 的见解
  • DOI:
    10.1016/j.eclinm.2024.102557
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Julia Wade;Nicola Farrar;Alba X. Realpe;Jenny L. Donovan;Laura Forsyth;Kirsty A. Harkness;Peter J. A. Hutchinson;Neil Kitchen;Steff C. Lewis;James J. M. Loan;Jacqueline Stephen;R. Al‐Shahi Salman;Conor Mallucci;Philip M White;Madeleine Eriksson;Raza Hayat;Elaine Kinsella;Katherine Lewis;A. Neilson;David C.S. White;Julia Boyd;Alastair Bullen;Morag Maclean;Andrew Stoddart;Sandra Phair;Helen Evans;Jo Noakes;Debra Alexander;C. Keerie;Christopher Linsley;Garry Milne;John Norrie;Janet Bunch;Kathryn Douthwaite;Simon Temple;James Hogg;David Scott;Pat Spallone;Ian Stuart;Joanna M. Wardlaw;Jeb Palmer;E. Sakka;Nitin Mukerji;Emanuel Cirstea;Susan Davies;V. Giannakaki;Ammar Kadhim;Oliver Kennion;Moidul Islam;Lucie Ferguson;Manjunath Prasad;Andrew Bacon;Emma Richards;Jo Howe;C. Kamara;Jonathan Gardner;Madalina Roman;Mary Sikaonga;Julian Cahill;A. Rossdeutsch;Varduhi Cahill;Imron Hamina;Kishor Chaudhari;Mihai Danciut;Emma Clarkson;A. Bjornson;Diederik Bulters;R. Digpal;Winnington Ruiz;Mirriam Taylor;Divina Anyog;K. Tluchowska;Jackson Nolasco;Daniel Brooks;Kleopatra Angelopoulou;Bethany Welch;N. Broomes;Ioannis Fouyas;A. MacRaild;Chandru Kaliaperumal;J. Teasdale;M. Coakley;Paul Brennan;Drahoslav Sokol;Anthony Wiggins;Mairi MacDonald;Sarah Risbridger;Pragnesh Bhatt;Janice Irvine;Sohail Majeed;Sandra Williams;John Reid;Annika Walch;Farah Muir;J. van Beijnum;Paul Leach;Tom Hughes;Milan Makwana;Khalid Hamandi;Dympna McAleer;Belinda Gunning;Daniel Walsh;Oliver Wroe Wright;Sabina Patel;Nihal Gurusinghe;S. Raza;Terri;Allan Brown;Sonia Raj;Ruth Pennington;Charlene Campbell;Shakeelah Patel;F. Colombo;Mario Teo;Jack Wildman;Kerry Smith;Elizabeth Goff;Deanna Stephens;B. Borislavova;R. Worner;S. Buddha;Philip Clatworthy;Richard Edwards;Evangeline Clayton;Karen Coy;Lisa Tucker;Sandra Dymond;Andrew Mallick;Rebecca Hodnett;F. Spickett;Patrick Grover;A. Banaras;Sifelani Tshuma;William Muirhead;C. Hill;Rupal Shah;Thomas Doke;Rebecca Hall;Sonny Coskuner;L. Aslett;R. Vindlacheruvu;Anthony Ghosh;Teresa Fitzpatrick;Lauren Harris;Tom Hayton;Arlo Whitehouse;Andrew McDarby;Rebecca Hancox;C. K. Auyeung;Ramesh Nair;Rhys Thomas;Heather McLachlan;A. Kountourgioti;Guillelme Orjales;Jan Kruczynski;Sophie Hunter;N. Bohnacker;Rosette Marimon;Lydia Parker;O. Raha;Puneet Sharma;Christopher Uff;Geetha Boyapati;Marios Papadopoulos;Siobhan Kearney;R. Visagan;Ellaine Bosetta;Hasan Asif;Adel Helmy;Liliana Chapas;S. Tarantino;K. Caldwell;M. Guilfoyle;Smriti Agarwal;Daniel Brown;Sarah Holland;T. Tajsic;Clare Fletcher;Aisha Sebyatki;S. Ushewokunze;Sarah Ali;John Preston;Carole Chambers;Mohammed Patel;D. Holsgrove;D. Mclaughlan;Tracey Marsden;K. Cawley;Hellen Raffalli;Stephanie Lee;Anil Israni;Rachael Dore;Taya Anderson;D. Hennigan;Shelley Mayor;Samantha Glover;E. Chavredakis;Debbie Brown;Giannis Sokratous;John Williamson;Cathy Stoneley;A. Brodbelt;J. Farah;Sarah Illingworth;A. B. Konteas;Deborah Davies;Carol Owen;Loretta Kerr
  • 通讯作者:
    Loretta Kerr

Richard Edwards的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Edwards', 18)}}的其他基金

Exploring the Impact of Observation Protocol Data in Changing Instructor Motivation and Practice
探索观察协议数据对改变教师动机和实践的影响
  • 批准号:
    2236327
  • 财政年份:
    2023
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Standard Grant
P2C2: Testing Interpretations of the Oxygen Isotopic Composition of Asian Cave Calcite at Abrupt, Millennial, and Orbital Timescales
P2C2:在突变、千年和轨道时间尺度上测试亚洲洞穴方解石氧同位素组成的解释
  • 批准号:
    2202913
  • 财政年份:
    2022
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Standard Grant
Collaborative Research: US GEOTRACES GP17-OCE and GP17-ANT: Thorium-230, Thorium-232 and Protactinium-231 tracers of trace element supply and removal
合作研究:美国GEOTRACES GP17-OCE和GP17-ANT:Thorium-230、Thorium-232和Protactinium-231微量元素供应和去除示踪剂
  • 批准号:
    2048542
  • 财政年份:
    2021
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Continuing Grant
Development of Precipitation, Evaporation and Temperature Records from Tropical Lake Sediments and Cave Deposits for the last 700,000 years
过去 70 万年热带湖泊沉积物和洞穴沉积物的降水、蒸发和温度记录的发展
  • 批准号:
    2103020
  • 财政年份:
    2021
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Standard Grant
Collaborative Research: P2C2--South African Hydroclimate Reconstructions Using Speleothem Multiproxy Analyses
合作研究:P2C2——使用 Speleothem 多代理分析重建南非水文气候
  • 批准号:
    2002474
  • 财政年份:
    2020
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Standard Grant
Collaborative Research: U.S. GEOTRACES Pacific Meridional Transect: Thorium-232, Thorium-231 and Protactinium-231 as tracers of trace element supply and removal
合作研究:美国 GEOTRACES 太平洋经线横断面:Thorium-232、Thorium-231 和 Protactinium-231 作为微量元素供应和去除的示踪剂
  • 批准号:
    1736677
  • 财政年份:
    2017
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Continuing Grant
Collaborative Research: P2C2--Cave Climate Histories of East/Central Asia: Deeper in Time, Wider Geographically, New Analytical Approaches, and New Tests of Climate Interpretations
合作研究:P2C2--东亚/中亚洞穴气候历史:更深入的时间、更广泛的地理、新的分析方法和气候解释的新测试
  • 批准号:
    1702816
  • 财政年份:
    2017
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Standard Grant
P2C2: Testing the Timing of the Devils Hole Climate Record
P2C2:测试魔鬼洞气候记录的时间
  • 批准号:
    1602940
  • 财政年份:
    2016
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Standard Grant
Collaborative Research: U.S. GEOTRACES Arctic Section: Thorium-230, Thorium-232, and Protactinium-231 tracers of trace element supply and removal.
合作研究:美国 GEOTRACES 北极部分:Thorium-230、Thorium-232 和 Protactinium-231 微量元素供应和清除示踪剂。
  • 批准号:
    1434886
  • 财政年份:
    2015
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Continuing Grant
Collaborative Research: U.S. GEOTRACES Pacific Section: Analysis of 230Th, 232Th and 231Pa
合作研究:美国 GEOTRACES 太平洋部分:230Th、232Th 和 231Pa 分析
  • 批准号:
    1233903
  • 财政年份:
    2013
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Continuing Grant

相似国自然基金

in silico生物分子网络动力学参数高速与高精度自动化估计的研究
  • 批准号:
    31301100
  • 批准年份:
    2013
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
In silico/In vitro偶联ACAT生理模型筛选药物及其制剂的生物利用度/生物等效性
  • 批准号:
    81173009
  • 批准年份:
    2011
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
糖尿病相关的IGFBPs与IGF相互作用机理研究
  • 批准号:
    21003037
  • 批准年份:
    2010
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
脂质体电动色谱与药物吸收和分布的关系
  • 批准号:
    30801443
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
人类基因组中超大基因的鉴定
  • 批准号:
    30270748
  • 批准年份:
    2002
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-SNSF: Crack Path Prediction and Control in Nonlinearly Viscoelastic Materials: in-silico to Experiments with Viscoelastic and Tough Hydrogels
NSF-SNSF:非线性粘弹性材料中的裂纹路径预测和控制:粘弹性和坚韧水凝胶的计算机实验
  • 批准号:
    2403592
  • 财政年份:
    2024
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Standard Grant
Whole genome sequence interpretation for lipids to discover new genes and mechanisms for coronary artery disease
脂质的全基因组序列解释,以发现冠状动脉疾病的新基因和机制
  • 批准号:
    10722515
  • 财政年份:
    2023
  • 资助金额:
    $ 36.04万
  • 项目类别:
Systems Approaches to Understanding the Impact of Cell-Cell Fusion on Therapeutic Resistance
了解细胞间融合对治疗耐药性影响的系统方法
  • 批准号:
    10607123
  • 财政年份:
    2023
  • 资助金额:
    $ 36.04万
  • 项目类别:
Predictive modeling of mammalian cell fate transitions over time and space with single-cell genomics
利用单细胞基因组学预测哺乳动物细胞命运随时间和空间转变的模型
  • 批准号:
    10572855
  • 财政年份:
    2023
  • 资助金额:
    $ 36.04万
  • 项目类别:
Identifying and modeling immune correlates of protection against congenital CMV transmission after primary maternal infection
原发性母体感染后预防先天性巨细胞病毒传播的免疫相关性的识别和建模
  • 批准号:
    10677439
  • 财政年份:
    2023
  • 资助金额:
    $ 36.04万
  • 项目类别:
A data science framework for transforming electronic health records into real-world evidence
将电子健康记录转化为现实世界证据的数据科学框架
  • 批准号:
    10664706
  • 财政年份:
    2023
  • 资助金额:
    $ 36.04万
  • 项目类别:
Triage of Developmental and Reproductive Toxicants using an In vitro to In Vivo Extrapolation (IVIVE)-Toxicokinetic Computational modeling Application
使用体外到体内外推法 (IVIVE) 对发育和生殖毒物进行分类 - 毒代动力学计算模型应用
  • 批准号:
    10757140
  • 财政年份:
    2023
  • 资助金额:
    $ 36.04万
  • 项目类别:
Discovery of early immunologic biomarkers for risk of PTLDS through machine learning-assisted broad temporal profiling of humoral immune response
通过机器学习辅助的体液免疫反应的广泛时间分析发现 PTLDS 风险的早期免疫生物标志物
  • 批准号:
    10738144
  • 财政年份:
    2023
  • 资助金额:
    $ 36.04万
  • 项目类别:
Prediction of Phase Transition Behavior by Machine Learning to Interpret Molecular Arrangement and Application to Photofunctional Liquid Crystals
通过机器学习预测相变行为以解释分子排列及其在光功能液晶中的应用
  • 批准号:
    22KJ1964
  • 财政年份:
    2023
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Validating the performance and inclusivity of a novel functionally-informed predictive genetic test method for polygenic disease
验证多基因疾病的新型功能信息预测基因测试方法的性能和包容性
  • 批准号:
    10759476
  • 财政年份:
    2023
  • 资助金额:
    $ 36.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了