Addressing the architecture, dynamics and activation mechanism of the CGRP receptor

解决 CGRP 受体的结构、动力学和激活机制

基本信息

  • 批准号:
    BB/M007529/1
  • 负责人:
  • 金额:
    $ 43.45万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

G protein coupled receptors (GPCRs) are the largest family of proteins in the human genome and also the largest target for therapeutic drugs; thus they are of enormous scientific and practical interest. They are divided into a number of families. Of these, family-A is the best understood, but family-B includes receptors which are likely to be important in many disease states and so it is important to understand how these function, both to further our knowledge of fundamental biology and also for the design of new drugs.Calcitonin gene-related peptide (CGRP) is found throughout the nervous system and is particularly important in regulating both the cardiovascular system (the heart and blood vessels) and also the immune system and inflammation. The receptor for CGRP is of special scientific interest as it involves a GPCR called CLR and also a second protein called RAMP1. RAMP1 is a member of a protein family that modulates a number of GPCRs of which the best characterised is CLR. CGRP is also likely to be important both in cardiovascular disorders and any disease that involves inflammation. The peptide is a major cause of migraine and drugs which block CGRP receptors have shown great promise in clinical trials; however, so far it has not been possible to use these clinically because of toxicity problems. Thus, there is an urgent need to develop new drugs that could act on CGRP receptors.The CGRP receptor is made up of two parts. A portion called the transmembrane domain is found in the membranes of cells. This is connected to the extracellular domain, which is on the outside of cells. CGRP interacts with both parts of this structure and causes the transmembrane domain to change shape. This causes the receptor to interact with other proteins, leading to cell activation. We have a crystal structure of the part of the CGRP receptor that is on the outside of cells. Unfortunately, we do not know how CGRP binds to this, nor do we know how it binds to the transmembrane domain. This severely limits our understanding of the receptor and our ability to design drugs that could target it.We have previously used experimental data from a technique known as site-directed mutagenesis to construct a computer model of the transmembrane domain of the CGRP receptor. This transmembrane domain is very similar to the transmembrane domains of two family-B GPCRs which were crystallised after our computer model was produced. This gives us confidence that our approach of combining experimental and computational methods is valuable. In this project, we intend to extend the approach to study how CGRP binds to both domains of the receptor and how this causes the receptor to become activated. We will use mutagenesis and also methods where we physically cross-link CGRP to the receptor to identify contact points. We will then use these to construct computational models, which we can refine through further experimentation. Using a computer, we can predict how the receptor shape will change when CGRP binds to it, so identifying the mechanism for receptor activation. This knowledge will be benefitial in the design of new drugs which can either block the receptor or promote its activation.
G蛋白偶联受体(gpcr)是人类基因组中最大的蛋白家族,也是治疗药物的最大靶点;因此,它们具有巨大的科学和实际意义。他们被分成许多科。其中,a家族是了解得最好的,但b家族包含的受体可能在许多疾病状态中都很重要,因此了解这些受体的功能非常重要,这不仅有助于我们进一步了解基础生物学知识,也有助于新药的设计。降钙素基因相关肽(CGRP)存在于整个神经系统中,在调节心血管系统(心脏和血管)、免疫系统和炎症方面尤为重要。CGRP的受体具有特殊的科学意义,因为它涉及一种名为CLR的GPCR和另一种名为RAMP1的蛋白质。RAMP1是一个蛋白家族的成员,它可以调节许多gpcr,其中最典型的是CLR。CGRP在心血管疾病和任何涉及炎症的疾病中也可能很重要。这种肽是偏头痛的主要原因,阻断CGRP受体的药物在临床试验中显示出很大的希望;然而,由于毒性问题,到目前为止还不可能在临床上使用这些药物。因此,迫切需要开发能够作用于CGRP受体的新药。CGRP受体由两部分组成。细胞膜上有一个叫做跨膜结构域的部分。它与细胞外区域相连,细胞外区域位于细胞外部。CGRP与该结构的两个部分相互作用,导致跨膜结构域改变形状。这导致受体与其他蛋白质相互作用,导致细胞活化。我们有CGRP受体部分的晶体结构它在细胞外部。不幸的是,我们不知道CGRP如何与之结合,也不知道它如何与跨膜结构域结合。这严重限制了我们对受体的理解和设计针对它的药物的能力。我们之前使用了一种称为定点诱变的技术的实验数据来构建CGRP受体跨膜结构域的计算机模型。这个跨膜结构域与我们的计算机模型产生后结晶的两个b家族gpcr的跨膜结构域非常相似。这给了我们信心,我们结合实验和计算方法的方法是有价值的。在这个项目中,我们打算扩展这种方法来研究CGRP如何结合到受体的两个结构域以及这是如何导致受体被激活的。我们将使用诱变和其他方法,其中我们物理交联CGRP到受体,以确定接触点。然后我们将使用这些来构建计算模型,我们可以通过进一步的实验来完善。利用计算机,我们可以预测当CGRP与受体结合时,受体形状将如何变化,从而确定受体激活的机制。这一知识将有利于设计新药,既可以阻断受体,也可以促进其激活。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
hCALCRL mutation causes autosomal recessive nonimmune hydrops fetalis with lymphatic dysplasia.
  • DOI:
    10.1084/jem.20180528
  • 发表时间:
    2018-09-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mackie DI;Al Mutairi F;Davis RB;Kechele DO;Nielsen NR;Snyder JC;Caron MG;Kliman HJ;Berg JS;Simms J;Poyner DR;Caron KM
  • 通讯作者:
    Caron KM
Photoaffinity Cross-Linking and Unnatural Amino Acid Mutagenesis Reveal Insights into Calcitonin Gene-Related Peptide Binding to the Calcitonin Receptor-like Receptor/Receptor Activity-Modifying Protein 1 (CLR/RAMP1) Complex.
  • DOI:
    10.1021/acs.biochem.8b00502
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    J. Simms;Romez Uddin;T. Sakmar;Joseph J Gingell;Michael L Garelja;D. Hay;M. Brimble;P. Harris;C. Reynolds;D. Poyner
  • 通讯作者:
    J. Simms;Romez Uddin;T. Sakmar;Joseph J Gingell;Michael L Garelja;D. Hay;M. Brimble;P. Harris;C. Reynolds;D. Poyner
The Structure of the CGRP and Related Receptors.
  • DOI:
    10.1007/164_2018_132
  • 发表时间:
    2018-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Simms;S. Routledge;Romez Uddin;D. Poyner
  • 通讯作者:
    J. Simms;S. Routledge;Romez Uddin;D. Poyner
Extracellular loops 2 and 3 of the calcitonin receptor selectively modify agonist binding and efficacy.
  • DOI:
    10.1016/j.bcp.2018.02.005
  • 发表时间:
    2018-04
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Dal Maso E;Zhu Y;Pham V;Reynolds CA;Deganutti G;Hick CA;Yang D;Christopoulos A;Hay DL;Wang MW;Sexton PM;Furness SGB;Wootten D
  • 通讯作者:
    Wootten D
Genetically encoded photocross-linkers determine the biological binding site of exendin-4 peptide in the N-terminal domain of the intact human glucagon-like peptide-1 receptor (GLP-1R).
  • DOI:
    10.1074/jbc.m117.779496
  • 发表时间:
    2017-04-28
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Koole C;Reynolds CA;Mobarec JC;Hick C;Sexton PM;Sakmar TP
  • 通讯作者:
    Sakmar TP
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Poyner其他文献

David Poyner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Poyner', 18)}}的其他基金

Investigating GPCR:RAMP interactions using nanobodies
使用纳米抗体研究 GPCR:RAMP 相互作用
  • 批准号:
    BB/R016755/1
  • 财政年份:
    2018
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Research Grant
A new method of in-silico drug discovery using essential dynamics
利用基本动力学进行计算机药物发现的新方法
  • 批准号:
    BB/S000100/1
  • 财政年份:
    2018
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Research Grant
THE ROLE OF RAMPS IN LIGAND-ENGENDERED SIGNAL BIAS OF SECRETIN-LIKE RECEPTORS
斜坡在促胰液素样受体配体产生的信号偏差中的作用
  • 批准号:
    BB/M000176/1
  • 财政年份:
    2015
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Research Grant
The Use Of Novel Polymer-Lipid Nanoparticles To Study G-Protein-Coupled Receptor Activation And Dynamics
使用新型聚合物脂质纳米颗粒研究 G 蛋白偶联受体的激活和动力学
  • 批准号:
    BB/I019960/1
  • 财政年份:
    2012
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Research Grant

相似国自然基金

The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Investigating FGF Signaling Dynamics in migrating cells
研究迁移细胞中的 FGF 信号动力学
  • 批准号:
    10679898
  • 财政年份:
    2024
  • 资助金额:
    $ 43.45万
  • 项目类别:
Molecular and functional architecture of a premotor circuit for decision making
用于决策的前运动电路的分子和功能架构
  • 批准号:
    10651389
  • 财政年份:
    2023
  • 资助金额:
    $ 43.45万
  • 项目类别:
Molecular Mechanisms of Mitochondrial Biogenesis
线粒体生物发生的分子机制
  • 批准号:
    10735778
  • 财政年份:
    2023
  • 资助金额:
    $ 43.45万
  • 项目类别:
Development of multi-color 3D super-localization LiveFISH and LiveFISH PAINT to investigate the chromatin dynamics at any genomic scale
开发多色 3D 超定位 LiveFISH 和 LiveFISH PAINT,以研究任何基因组规模的染色质动态
  • 批准号:
    10725002
  • 财政年份:
    2023
  • 资助金额:
    $ 43.45万
  • 项目类别:
Determining the molecular mechanisms of HIV-1 maturation
确定 HIV-1 成熟的分子机制
  • 批准号:
    10750083
  • 财政年份:
    2023
  • 资助金额:
    $ 43.45万
  • 项目类别:
Toward therapeutic targeting of liquid-liquid phase separation dynamics in skin
皮肤液-液相分离动力学的治疗靶向
  • 批准号:
    10679610
  • 财政年份:
    2023
  • 资助金额:
    $ 43.45万
  • 项目类别:
Architecture, dynamics and regulation of erythrocyte ankyrin-1 complexes
红细胞ankyrin-1复合物的结构、动力学和调节
  • 批准号:
    10638440
  • 财政年份:
    2023
  • 资助金额:
    $ 43.45万
  • 项目类别:
Parameterizing the relationship between motor cortical reactivation during sleep and motor skill acquisition in the freely behaving marmoset
参数化睡眠期间运动皮层重新激活与自由行为狨猴运动技能习得之间的关系
  • 批准号:
    10658109
  • 财政年份:
    2023
  • 资助金额:
    $ 43.45万
  • 项目类别:
Regulation of mitochondrial morphology and functional versatility
线粒体形态和功能多样性的调节
  • 批准号:
    10715704
  • 财政年份:
    2023
  • 资助金额:
    $ 43.45万
  • 项目类别:
Modeling and Analysis of the Spatio-Temporal Dynamics of the Mitochondrial Network
线粒体网络时空动力学的建模与分析
  • 批准号:
    10568586
  • 财政年份:
    2023
  • 资助金额:
    $ 43.45万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了