Periodic 3-D nanoparticle arrays by protein crystallization

通过蛋白质结晶形成周期性 3D 纳米颗粒阵列

基本信息

  • 批准号:
    EP/F044437/1
  • 负责人:
  • 金额:
    $ 52.07万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

Very small particles with diameters of only a few nanometres (a nanometre is a unit of length 1000 000 000 times smaller than a metre) can have properties quite different from bulk materials. If particles of this size are assembled to form a periodic array, that is one in which a simple arrangement of particles is repeated many times, electrical and magnetic interactions between the particles can further change the properties. This is what makes periodic arrays of nanometre-sized particles, known as nanoparticles for short, interesting.This project is to develop a new way of making 3-dimensional periodic arrays of nanoparticles, with novel and useful magnetic and optical properties. Many ways have been found to make 2-dimensional periodic arrays of nanoparticles, but making a truly 3-dimensional array, more than a few nanoparticles thick, is much more difficult. The approach we propose promises to be faster and more flexible than the current alternative, which is a purely chemical technique known as colloidal crystallization. Our method introduces elements of biology as well as chemistry, because we will synthesize nanoparticles inside proteins, then crystallize the protein. Since a protein crystal is a periodic array of molecules, and each molecule contains a nanoparticle, the result will be the desired 3-dimensional periodic array of nanoparticles.We will start by using the protein ferritin to make nanoparticles. The ferritin molecule is shaped like a hollow sphere and cells use it to store iron. We will synthesize magnetic metal and oxide nanoparticles for magnetic studies, and other metal nanoparticles for optical studies. We will find the best conditions for growing large crystals of ferritin with nanoparticles inside, and use very sensitive techniques such as scanning probe microscopy and dynamic light scattering to study the very earliest stages of array growth. We will change the symmetry of our 3-dimensional periodic arrays by changing the crystallization conditions and we will also study other proteins, including Dps, which has a similar structure to ferritin, but is used to protect DNA.We will measure the magnetic properties of our nanoparticle arrays at different temperatures and compare the results with computer simulations. This will help us gain a deeper understanding of how the magnetic fields of all the individual particles interact to determine the magnetic behaviour of the array as a whole. Understanding magnetic interactions is important for developing new materials for magnetic data recording as well as being of interest in itself.We will also measure how light is transmitted through and reflected from 3-dimensional periodic arrays of silver, gold and alloy nanoparticles. The fact that the period of the array will be much smaller than the wavelength of light makes these systems particularly interesting. Their study will contribute to the future development of exotic optical devices such as perfect lenses or shields that can make an object invisible.
直径只有几纳米的非常小的颗粒(纳米是长度单位,比米小1000 000 000倍)可以具有与散装材料完全不同的性质。如果这种大小的粒子被组装成一个周期性的阵列,也就是说,一个简单的粒子排列被重复多次,粒子之间的电磁相互作用可以进一步改变性质。这就是为什么纳米颗粒的周期性阵列,简称纳米颗粒,有趣。本项目是开发一种新的方法来制造三维纳米颗粒的周期性阵列,具有新颖和有用的磁性和光学特性。已经发现了许多方法来制造纳米颗粒的二维周期性阵列,但是制造真正的三维阵列,比几个纳米颗粒厚,要困难得多。我们提出的方法有望比目前的替代方法更快,更灵活,这是一种被称为胶体结晶的纯化学技术。我们的方法引入了生物学和化学元素,因为我们将在蛋白质内合成纳米颗粒,然后使蛋白质结晶。由于蛋白质晶体是分子的周期性阵列,每个分子包含一个纳米颗粒,因此结果将是所需的纳米颗粒的三维周期性阵列。我们将从使用蛋白质铁蛋白制备纳米颗粒开始。铁蛋白分子的形状像一个中空的球体,细胞用它来储存铁。我们将合成磁性金属和氧化物纳米粒子用于磁性研究,以及其他金属纳米粒子用于光学研究。我们将找到生长含有纳米颗粒的铁蛋白大晶体的最佳条件,并使用非常敏感的技术,如扫描探针显微镜和动态光散射来研究阵列生长的最早阶段。我们将通过改变结晶条件来改变我们的三维周期阵列的对称性,我们还将研究其他蛋白质,包括Dps,它具有与铁蛋白相似的结构,但用于保护DNA。我们将测量我们的纳米颗粒阵列在不同温度下的磁性,并将结果与计算机模拟进行比较。这将有助于我们更深入地了解所有单个粒子的磁场如何相互作用,以确定整个阵列的磁性行为。了解磁相互作用对于开发磁数据记录的新材料以及对其本身感兴趣是重要的。我们还将测量光如何通过银、金和合金纳米颗粒的3维周期性阵列透射和反射。阵列的周期远小于光的波长,这一事实使得这些系统特别有趣。他们的研究将有助于未来发展奇异的光学设备,如完美的透镜或盾牌,可以使物体不可见。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effective energy barrier distributions for random and aligned magnetic nanoparticles.
随机和排列磁性纳米颗粒的有效能垒分布。
Using magnetic nanoparticles to probe protein damage in ferritin caused by freeze concentration
  • DOI:
    10.1063/1.4935261
  • 发表时间:
    2015-11
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    E. Chagas;S. Carreira;W. Schwarzacher
  • 通讯作者:
    E. Chagas;S. Carreira;W. Schwarzacher
Energy barrier distributions for magnetic nanoparticles with competing cubic and uniaxial anisotropies
具有竞争立方和单轴各向异性的磁性纳米颗粒的能量势垒分布
  • DOI:
    10.1016/j.physleta.2014.09.028
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Correia M
  • 通讯作者:
    Correia M
Electrochemically Triggered Selective Adsorption of Biotemplated Nanoparticles on Self-Assembled Organometallic Diblock Copolymer Thin Films
  • DOI:
    10.1002/adfm.201200210
  • 发表时间:
    2012-08-07
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Eloi, Jean-Charles;Jones, Sarah E. Ward;Schwarzacher, Walther
  • 通讯作者:
    Schwarzacher, Walther
Synthesis of Cationized Magnetoferritin for Ultra-fast Magnetization of Cells.
  • DOI:
    10.3791/54785
  • 发表时间:
    2016-12-13
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Correia Carreira S;Armstrong JP;Okuda M;Seddon AM;Perriman AW;Schwarzacher W
  • 通讯作者:
    Schwarzacher W
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Walther Schwarzacher其他文献

Neuere Erfahrungen über tödliche Arsenikvergiftungen
NiMo electrocatalysts from a deep eutectic solvent for the hydrogen evolution reaction
用于析氢反应的低共熔溶剂中的镍钼电催化剂
  • DOI:
    10.1016/j.ijhydene.2025.05.272
  • 发表时间:
    2025-06-27
  • 期刊:
  • 影响因子:
    8.300
  • 作者:
    Natalia G. Sousa;Lucas L. Bezerra;Kauan L. Gomes;Filipe X. Feitosa;Hosiberto B. de Sant'Ana;Lucia H. Mascaro;Walther Schwarzacher;Pedro de Lima-Neto;Norberto K.V. Monteiro;Paulo N.S. Casciano;Adriana N. Correia
  • 通讯作者:
    Adriana N. Correia
Quantitative und theoretische Methoden in der stratigraphisch-sedimentologischen Analyse
Über die Verteilung des Kohlenoxydes in der Leiche bei Fällen von Kohlenoxydgasvergiftungen auf Grund spektrophotometrischer Messungen
Beiträge zum Mechanismus des Erhängungstodes

Walther Schwarzacher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Walther Schwarzacher', 18)}}的其他基金

Single-molecule photo-spintronics
单分子光自旋电子学
  • 批准号:
    EP/M00497X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 52.07万
  • 项目类别:
    Research Grant
In-situ Electrochemical Fabrication of Single Molecule Spintronic Junctions
单分子自旋电子结的原位电化学制造
  • 批准号:
    EP/H002227/1
  • 财政年份:
    2010
  • 资助金额:
    $ 52.07万
  • 项目类别:
    Research Grant
Single Molecule Spintronics
单分子自旋电子学
  • 批准号:
    EP/D034132/1
  • 财政年份:
    2006
  • 资助金额:
    $ 52.07万
  • 项目类别:
    Research Grant

相似海外基金

Nanoparticle Coated Microelectrode Arrays for Electrochemically Controlled Gene Editing at the Electrode Site
用于电极位点电化学控制基因编辑的纳米颗粒涂层微电极阵列
  • 批准号:
    10604904
  • 财政年份:
    2023
  • 资助金额:
    $ 52.07万
  • 项目类别:
3D microprinting-enabled microinjection needle arrays for enhanced therapeutics delivery into the brain
支持 3D 微打印的显微注射针阵列可增强向大脑的治疗输送
  • 批准号:
    10761073
  • 财政年份:
    2023
  • 资助金额:
    $ 52.07万
  • 项目类别:
Nanoparticle Arrays for Novel, Organized Perovskites Assisted by Copolymer assembly Kinetics (NANOPACK): Designer nanomaterials for energy applications
共聚物组装动力学辅助的新型有序钙钛矿纳米粒子阵列 (NANOPACK):用于能源应用的设计纳米材料
  • 批准号:
    RGPIN-2019-05994
  • 财政年份:
    2022
  • 资助金额:
    $ 52.07万
  • 项目类别:
    Discovery Grants Program - Individual
A Novel Wireless and Subcellular Device for Neuromodulation
用于神经调节的新型无线和亚细胞设备
  • 批准号:
    10516902
  • 财政年份:
    2022
  • 资助金额:
    $ 52.07万
  • 项目类别:
Gold nanoparticle Neurosensory Epiretinal Implant to Treat Photoreceptor Vision Loss
金纳米颗粒神经感觉视网膜前植入物治疗感光器视力丧失
  • 批准号:
    10528012
  • 财政年份:
    2022
  • 资助金额:
    $ 52.07万
  • 项目类别:
A Novel Wireless and Subcellular Device for Neuromodulation
用于神经调节的新型无线和亚细胞设备
  • 批准号:
    10676270
  • 财政年份:
    2022
  • 资助金额:
    $ 52.07万
  • 项目类别:
Gold nanoparticle Neurosensory Epiretinal Implant to Treat Photoreceptor Vision Loss
金纳米颗粒神经感觉视网膜前植入物治疗感光器视力丧失
  • 批准号:
    10675766
  • 财政年份:
    2022
  • 资助金额:
    $ 52.07万
  • 项目类别:
RUI: Plasmonic Nanoparticle Sandwiches: Using Peptoid Nanosheets as Platforms for Free-Standing Nanoparticle Arrays
RUI:等离子纳米颗粒三明治:使用类肽纳米片作为独立式纳米颗粒阵列的平台
  • 批准号:
    2203565
  • 财政年份:
    2022
  • 资助金额:
    $ 52.07万
  • 项目类别:
    Standard Grant
Nanoparticle Arrays for Novel, Organized Perovskites Assisted by Copolymer assembly Kinetics (NANOPACK): Designer nanomaterials for energy applications
共聚物组装动力学辅助的新型有序钙钛矿纳米粒子阵列 (NANOPACK):用于能源应用的设计纳米材料
  • 批准号:
    RGPIN-2019-05994
  • 财政年份:
    2021
  • 资助金额:
    $ 52.07万
  • 项目类别:
    Discovery Grants Program - Individual
CBET: Probing the Effects of Nanoparticle Morphology and Density in Bacterial Adhesion on Bioinspired Nanometallic Arrays.
CBET:探讨纳米颗粒形态和密度对仿生纳米金属阵列细菌粘附的影响。
  • 批准号:
    1951499
  • 财政年份:
    2020
  • 资助金额:
    $ 52.07万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了