Delta-doped diamond structures for high performance electronic devices
用于高性能电子器件的δ掺杂金刚石结构
基本信息
- 批准号:EP/H020055/1
- 负责人:
- 金额:$ 70.43万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The combination of extreme electronic and thermal properties found in synthetic diamond produced by chemical vapor deposition (CVD) is raising considerable excitement over its potential use as a semiconductor material. Experimental studies have demonstrated charge-carrier mobilities of >3000cm2V-1s-1 and thermal conductivities >2000 Wm-1K-1. The material has been predicted to have a breakdown field strength in excess of 10 MVcm-1. These figures suggest that, providing a range of technical challenges can be overcome, diamond would be particularly well suited to operation as a semiconductor material wherever high frequencies, high powers, high temperatures or high voltages are required. This proposal addresses the novel use of 'delta-doping' to realise such devices.In conventional device technology a major limitation to the magnitude of mobility values within a given semiconductor is the presence of ionised impurities which cause carrier scattering. However, it is these ionised impurities that are the origin of the free carriers within n- or p-doped material. It is the physical separation of the impurities from the free carriers, such that less scattering occurs and mobility values increase, that lies at the heart of recent improvements in high frequency device performance using III-V semiconductor technology. One approach to achieve this the formation of very thin, highly doped regions within a homostructure. Provided the doped, or d, layer is only a few atom layers thick, carriers will move in a region close to, but outside, this layer. The resultant separation between carriers and the donor/acceptor atoms that created them leads to enhanced mobility. The advantages offered by d doping in other systems will be valid for diamond, with the additional feature that the problem with the large activation energy of boron can be overcome, as very high concentrations are desirable in the d-layer. However, the molecular beam epitaxy (MBE) techniques that can be used for III-V semiconductor growth cannot be used with diamond; the need to use plasma-enhanced CVD processes significantly complicates the approach needed to realise atomic-scale modulation-doped diamond structures.While Si and GaAs devices dominate the solid-state microwave device market, they cannot match the power performance of the vacuum tube. One driver for diamond as a semiconductor stems from an interest in replacing vacuum tubes in niche applications. The development of a solid-state alternative would have many benefits including small size, low weight, low operational voltage (compared with vacuum tube devices), and greater robustness. Current vacuum tube designs, such as magnetrons, klystrons, and traveling-wave tubes (TWT) are usually bulky, often fragile, and expensive (with the exception of magnetrons for microwave ovens, which are manufactured in huge volumes and cost only $10-20/kW). If the intrinsic properties of diamond could be fully exploited through novel delta-doped device design and fabrication, it could compete not only with existing wide-bandgap devices (based on SiC and GaN) but also with TWTs in the entire radio frequency (RF) generation market up to 100 GHz. The control of power at high voltages is another potential use of the diamond devices that may arise from the proposed programme of study. Theoretically, a single diamond switch could be used to switch power at voltages approaching 50 kV. This is not currently achievable with any other electronic material.
化学气相沉积(CVD)合成金刚石中发现的极端电子和热性能的组合,使人们对其作为半导体材料的潜在用途产生了相当大的兴奋。实验研究表明,电荷载流子迁移率> 3000 cm 2 V-1 s-1,热导率>2000 Wm-1 K-1。该材料已被预测为具有超过10 MVcm-1的击穿场强。这些数字表明,如果能够克服一系列技术挑战,金刚石将特别适合在需要高频率、高功率、高温或高电压的地方作为半导体材料工作。在传统的器件技术中,对给定半导体内迁移率值大小的主要限制是存在导致载流子散射的电离杂质。然而,正是这些电离的杂质是n-或p-掺杂材料中自由载流子的来源。杂质与自由载流子的物理分离使得发生较少的散射并且迁移率值增加,这是最近使用III-V族半导体技术改进高频器件性能的核心。实现这一点的一种方法是在同质结构内形成非常薄的高掺杂区域。如果掺杂层(或d层)只有几个原子层厚,载流子将在靠近该层但在该层之外的区域内移动。载流子与产生它们的施主/受主原子之间的分离导致迁移率增强。在其他系统中通过d掺杂提供的优点将对金刚石有效,具有可以克服硼的大活化能的问题的附加特征,因为在d层中期望非常高的浓度。然而,可用于III-V族半导体生长的分子束外延(MBE)技术不能用于金刚石;需要使用等离子体增强CVD工艺显著地使实现原子尺度调制掺杂金刚石结构所需的方法复杂化。虽然Si和GaAs器件主导固态微波器件市场,但它们无法与真空管的功率性能相匹配。金刚石作为半导体的一个驱动力来自于在利基应用中取代真空管的兴趣。固态替代品的发展将有许多好处,包括小尺寸,低重量,低工作电压(与真空管器件相比)和更大的鲁棒性。目前的真空管设计,如磁控管,速调管和行波管(TWT)通常体积庞大,往往脆弱,昂贵(除了微波炉的磁控管,其制造量巨大,成本只有10 -20美元/千瓦)。如果金刚石的固有特性可以通过新型δ掺杂器件的设计和制造得到充分利用,它不仅可以与现有的宽带隙器件(基于SiC和GaN)竞争,而且可以在高达100 GHz的整个射频(RF)生成市场中与TWT竞争。在高压下控制电力是拟议研究方案可能产生的金刚石装置的另一个潜在用途。理论上,单个菱形开关可用于在接近50 kV的电压下切换电源。这是目前任何其他电子材料都无法实现的。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanodiamonds for device applications: An investigation of the properties of boron-doped detonation nanodiamonds.
- DOI:10.1038/s41598-018-21670-w
- 发表时间:2018-02-19
- 期刊:
- 影响因子:4.6
- 作者:Afandi A;Howkins A;Boyd IW;Jackman RB
- 通讯作者:Jackman RB
Nanometric diamond delta doping with boron
- DOI:10.1002/pssr.201600329
- 发表时间:2017-01-01
- 期刊:
- 影响因子:2.8
- 作者:Butler, James E.;Vikharev, Anatoly;Jackman, Richard B.
- 通讯作者:Jackman, Richard B.
Nanocrystalline diamond as an electronic material: An impedance spectroscopic and Hall effect measurement study
- DOI:10.1063/1.3291118
- 发表时间:2010-02-01
- 期刊:
- 影响因子:3.2
- 作者:Bevilacqua, Mose;Tumilty, Niall;Jackman, Richard B.
- 通讯作者:Jackman, Richard B.
Normally-OFF Diamond Reverse Blocking MESFET
- DOI:10.1109/ted.2021.3117237
- 发表时间:2021-12-01
- 期刊:
- 影响因子:3.1
- 作者:Canas, J.;Pakpour-Tabrizi, A. C.;Jackman, R. B.
- 通讯作者:Jackman, R. B.
Probing Electron-Phonon Interactions Away from the Fermi Level with Resonant Inelastic X-Ray Scattering
利用共振非弹性 X 射线散射探测远离费米能级的电子-声子相互作用
- DOI:10.1103/physrevx.11.041052
- 发表时间:2021
- 期刊:
- 影响因子:12.5
- 作者:Dashwood C
- 通讯作者:Dashwood C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Jackman其他文献
Local authority education expenditure in England and Wales: Why standards differ and the impact of government grants
- DOI:
10.1007/bf00128726 - 发表时间:
1981-01-01 - 期刊:
- 影响因子:2.200
- 作者:
Richard Jackman;John Papadachi - 通讯作者:
John Papadachi
Richard Jackman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Jackman', 18)}}的其他基金
Diamond Devices for extreme applications
适用于极端应用的金刚石装置
- 批准号:
EP/X00029X/1 - 财政年份:2023
- 资助金额:
$ 70.43万 - 项目类别:
Research Grant
Q-NEURO: Diamond Quantum Technology for the Investigation of Neurological disease
Q-NEURO:用于神经系统疾病研究的钻石量子技术
- 批准号:
EP/R034699/1 - 财政年份:2018
- 资助金额:
$ 70.43万 - 项目类别:
Research Grant
Diamond for Image Intensifier and Photodetection Applications
用于图像增强器和光电检测应用的 Diamond
- 批准号:
EP/N004159/1 - 财政年份:2015
- 资助金额:
$ 70.43万 - 项目类别:
Research Grant
Diamond devices for bioelectronic applications - invited resubmission
用于生物电子应用的金刚石器件 - 邀请重新提交
- 批准号:
EP/F026110/1 - 财政年份:2008
- 资助金额:
$ 70.43万 - 项目类别:
Research Grant
相似海外基金
Improving the output current of boron-doped diamond MOSFETs
提高硼掺杂金刚石 MOSFET 的输出电流
- 批准号:
23K03966 - 财政年份:2023
- 资助金额:
$ 70.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
MICA: Development of Boron Doped Diamond Based Transcutaneous Blood Gas Sensors for Improved Patient Ventilation Status Monitoring and Control
MICA:开发基于掺硼金刚石的经皮血气传感器,以改善患者通气状态监测和控制
- 批准号:
MR/X004945/1 - 财政年份:2022
- 资助金额:
$ 70.43万 - 项目类别:
Research Grant
Control of electronic properties by improving crystalline quality of phosphorus-doped n-type diamond containing heavy metal atoms
通过改善含重金属原子的磷掺杂n型金刚石的晶体质量来控制电子性能
- 批准号:
22K14478 - 财政年份:2022
- 资助金额:
$ 70.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of machinable boron-doped diamond
可加工掺硼金刚石的研制
- 批准号:
21K18656 - 财政年份:2021
- 资助金额:
$ 70.43万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Production of value-added chemicals using boron-doped diamond photocatalyst with strong reduction ability
利用还原能力强的掺硼金刚石光催化剂生产高附加值化学品
- 批准号:
21H02025 - 财政年份:2021
- 资助金额:
$ 70.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Isotopic, Doped Diamond Materials as a Plasma-facing Material for Fusion Power
同位素掺杂金刚石材料作为聚变功率的面向等离子体材料
- 批准号:
2625206 - 财政年份:2021
- 资助金额:
$ 70.43万 - 项目类别:
Studentship
Silicon-vacancy color centers in phosphorous-doped diamond for bright single-photon emission under electrical pumping
掺磷金刚石中的硅空位色心可在电泵浦下实现明亮的单光子发射
- 批准号:
410405168 - 财政年份:2019
- 资助金额:
$ 70.43万 - 项目类别:
Research Grants
Development of Boron Doped Diamond Sensors for Water Quality Monitoring
用于水质监测的掺硼金刚石传感器的开发
- 批准号:
2104926 - 财政年份:2018
- 资助金额:
$ 70.43万 - 项目类别:
Studentship
Isotopic, Doped Diamond Materials as a Plasma-facing Material for Fusion Power
同位素掺杂金刚石材料作为聚变功率的面向等离子体材料
- 批准号:
2013810 - 财政年份:2018
- 资助金额:
$ 70.43万 - 项目类别:
Studentship
Development of silicon and nitrogen co-doped diamond-like carbon with high functionality
高功能硅氮共掺杂类金刚石碳的研制
- 批准号:
18K04688 - 财政年份:2018
- 资助金额:
$ 70.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)