Q-NEURO: Diamond Quantum Technology for the Investigation of Neurological disease

Q-NEURO:用于神经系统疾病研究的钻石量子技术

基本信息

  • 批准号:
    EP/R034699/1
  • 负责人:
  • 金额:
    $ 28.79万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Understanding the function of the brain is one of the most significant challenges of the 21st century. Vast numbers of the human population face the prospect of neurodegenerative disease (such as Alzheimer's); numbers that will only get higher with ever-increasing lifespan, in-part due to success in other branches of medicine and improvements in healthy living conditions. Neurogenerative disease is devastating for both the patient, and his/her family and friends, who progressively 'lose' the one they care about. Moreover, societal and economic costs associated with the care regime needed for such patients are significant. The challenge is two-fold by nature of the immense complexity of the brain, contrasted with the minute underlying electromagnetic fields that interconnect individual cells. Unfortunately, there is a lack of methods to detect signalling processes with the desired sensitivity and sufficient spatial resolution, making the challenge of understanding the brain's complexity near insurmountable. Current state-of-the-art techniques monitor fluorescence changes of voltage dependent indicators or use electrical probes to measure voltages across cell membranes. At large scales, SQUID magnetometers are used for magnetoencephalography (MEG), but are insensitive to single nerve impulses and come at great financial cost. Each method has limitations in one or more of the following categories: signal to noise ratio, temporal resolution and spatial resolution. Hence there is a major need of revolutionary methods to overcome these barriers. Q-NEURO aims to fill a major, outstanding need in neuroscience research in such a revolutionary manor.Q-NEURO will develop a novel imaging method to enable the detection of individual signalling events in neuroscience. The biosensor is based on quantum engineered diamond with properties that make it an unrivalled sensor for biology. Fluorescence microscopy will be used to readout an array of spins in diamond, which in turn will detect the magnetic fields produced during neural signalling. The spins are associated with the nitrogen-vacancy defect centre in diamond, a quantum coherent spin system allowing for ultrasensitive magnetic detection under ambient conditions.The quantum-bio sensor developed by Q-NEURO will enable: (i) imaging of individual action potentials from neurons with high spatial resolution down to the nanoscale, (ii) real-time detection of action potentials with sub-millisecond temporal resolution, (iii) wide field-of-view monitoring of neuronal signalling events in two dimensional networks.
了解大脑的功能是21世纪世纪最重要的挑战之一。大量人口面临神经退行性疾病(如阿尔茨海默氏症)的前景;随着寿命的不断延长,部分原因是其他医学分支的成功和健康生活条件的改善,这些数字只会越来越高。神经退行性疾病对患者及其家人和朋友来说都是毁灭性的,他们逐渐“失去”他们关心的人。此外,与这些患者所需的护理制度相关的社会和经济成本是显著的。大脑的巨大复杂性与连接单个细胞的微小潜在电磁场形成了鲜明对比,这一挑战是双重的。不幸的是,目前缺乏方法来检测具有所需灵敏度和足够空间分辨率的信号过程,这使得理解大脑复杂性的挑战几乎无法克服。当前最先进的技术监测电压依赖性指示剂的荧光变化或使用电探针来测量跨细胞膜的电压。在大尺度上,SQUID磁力计用于脑磁图(MEG),但对单一神经冲动不敏感,而且成本很高。每种方法在以下类别中的一个或多个方面都有局限性:信噪比、时间分辨率和空间分辨率。因此,迫切需要革命性的方法来克服这些障碍。Q-NEURO旨在以这样一种革命性的方式满足神经科学研究中一个主要的、突出的需求。Q-NEURO将开发一种新的成像方法,以检测神经科学中的个体信号事件。该生物传感器基于量子工程金刚石,其特性使其成为生物学上无与伦比的传感器。荧光显微镜将用于读出钻石中的自旋阵列,这反过来将检测神经信号传递过程中产生的磁场。这些自旋与金刚石中的氮空位缺陷中心有关,金刚石是一种量子相干自旋系统,允许在环境条件下进行超灵敏的磁检测。Q-NEURO开发的量子生物传感器将实现:(i)以低至纳米级的高空间分辨率对来自神经元的个体动作电位进行成像,(ii)以亚毫秒时间分辨率实时检测动作电位,(iii)二维网络中神经元信号事件的宽视场监测。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimizing reactive ion etching to remove sub-surface polishing damage on diamond
  • DOI:
    10.1063/1.5094751
  • 发表时间:
    2019-06-28
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Hicks, Marie-Laure;Pakpour-Tabrizi, Alexander C.;Jackman, Richard B.
  • 通讯作者:
    Jackman, Richard B.
A detailed EIS study of boron doped diamond electrodes decorated with gold nanoparticles for high sensitivity mercury detection.
  • DOI:
    10.1038/s41598-021-89045-2
  • 发表时间:
    2021-05-04
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    McLaughlin MHS;Pakpour-Tabrizi AC;Jackman RB
  • 通讯作者:
    Jackman RB
Nanodiamonds for device applications: An investigation of the properties of boron-doped detonation nanodiamonds.
  • DOI:
    10.1038/s41598-018-21670-w
  • 发表时间:
    2018-02-19
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Afandi A;Howkins A;Boyd IW;Jackman RB
  • 通讯作者:
    Jackman RB
Diamond Nanowire Transistor with High Current Capability
具有高电流能力的金刚石纳米线晶体管
  • DOI:
    10.1002/pssa.202100622
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pakpour-Tabrizi A
  • 通讯作者:
    Pakpour-Tabrizi A
Diamond Electrodes for High Sensitivity Mercury Detection in the Aquatic Environment: Influence of Surface Preparation and Gold Nanoparticle Activity
  • DOI:
    10.1002/elan.201900281
  • 发表时间:
    2019-09-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    McLaughlin, Maeve H. S.;Pakpour-Tabrizi, Alexander C.;Jackman, Richard B.
  • 通讯作者:
    Jackman, Richard B.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Jackman其他文献

Local authority education expenditure in England and Wales: Why standards differ and the impact of government grants
  • DOI:
    10.1007/bf00128726
  • 发表时间:
    1981-01-01
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Richard Jackman;John Papadachi
  • 通讯作者:
    John Papadachi

Richard Jackman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Jackman', 18)}}的其他基金

Diamond Devices for extreme applications
适用于极端应用的金刚石装置
  • 批准号:
    EP/X00029X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 28.79万
  • 项目类别:
    Research Grant
Diamond for Image Intensifier and Photodetection Applications
用于图像增强器和光电检测应用的 Diamond
  • 批准号:
    EP/N004159/1
  • 财政年份:
    2015
  • 资助金额:
    $ 28.79万
  • 项目类别:
    Research Grant
Delta-doped diamond structures for high performance electronic devices
用于高性能电子器件的δ掺杂金刚石结构
  • 批准号:
    EP/H020055/1
  • 财政年份:
    2010
  • 资助金额:
    $ 28.79万
  • 项目类别:
    Research Grant
Diamond devices for bioelectronic applications - invited resubmission
用于生物电子应用的金刚石器件 - 邀请重新提交
  • 批准号:
    EP/F026110/1
  • 财政年份:
    2008
  • 资助金额:
    $ 28.79万
  • 项目类别:
    Research Grant

相似国自然基金

基于介质层调控的GaN-on-Diamond传热与结构特性研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Diamond/Al复合材料钨基纳米多相界面演化机制及其构效关系研究
  • 批准号:
    51871072
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
活性金属在非均质Diamond/Cu复合材料表面润湿机理研究
  • 批准号:
    51204016
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
高导热Diamond/SiC复合材料近终形成形的基础研究
  • 批准号:
    51274040
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
AlN/Diamond/Si多层膜声表面波器件及其高频特性研究
  • 批准号:
    60576011
  • 批准年份:
    2005
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Next generation diamond quantum sensors for future industries
面向未来行业的下一代金刚石量子传感器
  • 批准号:
    IM240100073
  • 财政年份:
    2024
  • 资助金额:
    $ 28.79万
  • 项目类别:
    Mid-Career Industry Fellowships
Multimodal cancer therapy and diagnostic system using 256-channel diamond quantum sensor array
使用256通道金刚石量子传感器阵列的多模式癌症治疗和诊断系统
  • 批准号:
    23H03721
  • 财政年份:
    2023
  • 资助金额:
    $ 28.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
EAGER: Quantum Manufacturing: Supporting Future Quantum Applications by Developing a Robust, Scalable Process to Create Diamond Nitrogen-Vacancy Center Qubits
EAGER:量子制造:通过开发稳健、可扩展的工艺来创建钻石氮空位中心量子位,支持未来的量子应用
  • 批准号:
    2242049
  • 财政年份:
    2023
  • 资助金额:
    $ 28.79万
  • 项目类别:
    Standard Grant
Nanoscale characterization of high-pressure superconductors using diamond quantum sensing
使用金刚石量子传感对高压超导体进行纳米级表征
  • 批准号:
    23H01835
  • 财政年份:
    2023
  • 资助金额:
    $ 28.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of microscale NMR system toward single cell measurement using diamond quantum sensor
使用金刚石量子传感器开发用于单细胞测量的微型核磁共振系统
  • 批准号:
    22KJ1907
  • 财政年份:
    2023
  • 资助金额:
    $ 28.79万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
  • 批准号:
    2326767
  • 财政年份:
    2023
  • 资助金额:
    $ 28.79万
  • 项目类别:
    Standard Grant
Development of ultra-low-noise amplifier using spin maser in diamond for microwave quantum technologies
使用金刚石中的自旋微波激射器开发用于微波量子技术的超低噪声放大器
  • 批准号:
    23KJ2135
  • 财政年份:
    2023
  • 资助金额:
    $ 28.79万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
EAGER: Quantum Manufacturing: Manufacturing Integrated Quantum Sensing and Quantum Photonic Technologies Through Direct Bonding of Diamond Membranes
EAGER:量子制造:通过直接粘合金刚石膜制造集成量子传感和量子光子技术
  • 批准号:
    2240399
  • 财政年份:
    2023
  • 资助金额:
    $ 28.79万
  • 项目类别:
    Standard Grant
Platform Development for Diamond Quantum and Photonic Technologies
钻石量子和光子技术平台开发
  • 批准号:
    2888637
  • 财政年份:
    2023
  • 资助金额:
    $ 28.79万
  • 项目类别:
    Studentship
Nanophotonics for telecom quantum networks based on neutral silicon vacancy centers in diamond
基于金刚石中性硅空位中心的电信量子网络纳米光子学
  • 批准号:
    545932-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 28.79万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了