Diamond devices for bioelectronic applications - invited resubmission

用于生物电子应用的金刚石器件 - 邀请重新提交

基本信息

  • 批准号:
    EP/F026110/1
  • 负责人:
  • 金额:
    $ 79.84万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

The interfacing between modern microelectronic device sensors and living organisms is a growing field, in which the electronic signals produced are used to provide information concerning the chemical and electrical processes occurring in the organisms concerned. Applications arise in the fields of biology and medicine, and in industries such as the biotechnology and food industries. An interesting field at present is neuron interfacing. Neurons are cells of the nervous system - the human brain has around 100 billion neurons - which carry messages through an electrochemical process. The behaviour of neurons can be followed by detecting electrical signals arising when a neuron sends a signal, or by chemical detection of neurotransmitters, which are specific chemicals that transmit information between one neuron and the next. Neuron interfacing requires intimate contact between the biological media and electronic or electrochemical devices, which typically might be silicon-based electronic devices or graphitic carbon/metal electrodes or electrode arrays. Progress in the research has been limited, either because the monitoring devices do not possess sufficient sensitivity, are hostile to the cultured cells, or undergo chemical change and significant degradation in the biological media. It is also the case that the traditional devices tend to carry out one function only, such as measurement of action potential. Ideally the devices should be able to stimulate the cells and control the chemical environment on the nanoscale at the device-culture interface, whilst monitoring the release of neurotransmitters and action potentials. Recently synthetic diamond, formed by the low pressure reactions of hydrocarbons and hydrogen in an energised plasma state at a solid surface, has become available at an economic price, with properties similar or surpassing those of natural diamond. The material can be prepared in an electrically insulating, semi-conducting or metallic state, depending on the exact growth conditions employed, and is ideally suited for electronic and electrochemical applications in harsh environments, in part because of the very high chemical stability of diamond. The properties of this new material make it ideal for exploitation in the field of neuron interfacing, and it should be possible to formulate multifunctional devices, which exploit both the electronic and electrochemical properties of diamond, and which yield more reliable and sensitive signals than the present devices.Although the biocompatibility of thin film diamond has been identified previously attempts to exploit it have mainly been concerned with passive applications, such as a wear- or chemically- resistant barriers. Here we will explore the potential of using diamond to fabricate active multifunctional sensors for neuronal applications. The project will involve growing the special forms of thin film diamond needed for the project, making FET and electrochemical sensors from it, culturing neuronal cells at the interface between the diamond and the biological media, and testing these biolectronic devices in the measurement of action potential and neurotransmitter release.To do this, we have assembled a multidisciplinary team comprising expertise in diamond electronic engineering, diamond electrochemistry and neuronal cell biology. If promising results are obtained, the project will pave the way for developing applications which could clearly have a huge impact in biomedical technology.
现代微电子器件传感器和活生物体之间的接口是一个不断发展的领域,其中产生的电子信号用于提供有关生物体中发生的化学和电学过程的信息。应用出现在生物学和医学领域,以及生物技术和食品工业等行业。目前一个有趣的领域是神经元接口。神经元是神经系统的细胞-人类大脑有大约1000亿个神经元-通过电化学过程传递信息。神经元的行为可以通过检测神经元发送信号时产生的电信号来跟踪,或者通过神经递质的化学检测来跟踪,神经递质是在一个神经元和下一个神经元之间传递信息的特定化学物质。神经元接口需要生物介质与电子或电化学装置之间的紧密接触,所述电子或电化学装置通常可以是硅基电子装置或石墨碳/金属电极或电极阵列。研究的进展受到限制,因为监测装置不具有足够的灵敏度,对培养的细胞不友好,或者在生物介质中经历化学变化和显著降解。传统的设备往往只执行一种功能,例如测量动作电位。理想情况下,这些设备应该能够刺激细胞并在设备-培养界面上控制纳米级的化学环境,同时监测神经递质和动作电位的释放。最近,通过烃和氢在固体表面上的激发等离子体状态下的低压反应形成的合成金刚石已经可以以经济的价格获得,其性质类似于或超过天然金刚石的性质。该材料可以制备成电绝缘、半导体或金属状态,这取决于所采用的确切生长条件,并且非常适合于恶劣环境中的电子和电化学应用,部分原因是金刚石具有非常高的化学稳定性。这种新材料的特性使其成为神经元接口领域开发的理想选择,并且应该可以配制多功能设备,该设备利用金刚石的电子和电化学特性,虽然薄膜金刚石的生物相容性已被确定以前试图利用它主要涉及被动应用,如耐磨或耐化学性屏障。在这里,我们将探讨使用金刚石制造用于神经元应用的有源多功能传感器的潜力。该项目将涉及生长该项目所需的特殊形式的薄膜金刚石,用它制造FET和电化学传感器,在金刚石和生物介质之间的界面培养神经细胞,并测试这些生物电子设备在测量动作电位和神经递质释放方面的能力。为此,我们组建了一个多学科团队,包括金刚石电子工程方面的专业知识,金刚石电化学和神经细胞生物学。如果获得有希望的结果,该项目将为开发可能对生物医学技术产生巨大影响的应用铺平道路。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanocrystalline diamond as an electronic material: An impedance spectroscopic and Hall effect measurement study
  • DOI:
    10.1063/1.3291118
  • 发表时间:
    2010-02-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Bevilacqua, Mose;Tumilty, Niall;Jackman, Richard B.
  • 通讯作者:
    Jackman, Richard B.
Nanodiamonds for device applications: An investigation of the properties of boron-doped detonation nanodiamonds.
  • DOI:
    10.1038/s41598-018-21670-w
  • 发表时间:
    2018-02-19
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Afandi A;Howkins A;Boyd IW;Jackman RB
  • 通讯作者:
    Jackman RB
The influence of ammonia on the electrical properties of detonation nanodiamond
  • DOI:
    10.1063/1.3272912
  • 发表时间:
    2009-12
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    M. Bevilacqua;A. Chaudhary;R. Jackman
  • 通讯作者:
    M. Bevilacqua;A. Chaudhary;R. Jackman
Nanometric diamond delta doping with boron
  • DOI:
    10.1002/pssr.201600329
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Butler, James E.;Vikharev, Anatoly;Jackman, Richard B.
  • 通讯作者:
    Jackman, Richard B.
Nanodiamond-coated silicon cantilever array for chemical sensing
  • DOI:
    10.1063/1.3484277
  • 发表时间:
    2010-08-30
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Ahmad, Rezal K.;Parade, Ana Carolina;Jackman, Richard B.
  • 通讯作者:
    Jackman, Richard B.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Jackman其他文献

Local authority education expenditure in England and Wales: Why standards differ and the impact of government grants
  • DOI:
    10.1007/bf00128726
  • 发表时间:
    1981-01-01
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Richard Jackman;John Papadachi
  • 通讯作者:
    John Papadachi

Richard Jackman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Jackman', 18)}}的其他基金

Diamond Devices for extreme applications
适用于极端应用的金刚石装置
  • 批准号:
    EP/X00029X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 79.84万
  • 项目类别:
    Research Grant
Q-NEURO: Diamond Quantum Technology for the Investigation of Neurological disease
Q-NEURO:用于神经系统疾病研究的钻石量子技术
  • 批准号:
    EP/R034699/1
  • 财政年份:
    2018
  • 资助金额:
    $ 79.84万
  • 项目类别:
    Research Grant
Diamond for Image Intensifier and Photodetection Applications
用于图像增强器和光电检测应用的 Diamond
  • 批准号:
    EP/N004159/1
  • 财政年份:
    2015
  • 资助金额:
    $ 79.84万
  • 项目类别:
    Research Grant
Delta-doped diamond structures for high performance electronic devices
用于高性能电子器件的δ掺杂金刚石结构
  • 批准号:
    EP/H020055/1
  • 财政年份:
    2010
  • 资助金额:
    $ 79.84万
  • 项目类别:
    Research Grant

相似国自然基金

兼捕减少装置(Bycatch Reduction Devices, BRD)对拖网网囊系统水动力及渔获性能的调控机制
  • 批准号:
    32373187
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Can we heal people using electricity? Developing fundamental understanding and bioelectronic devices to exploit bioelectricity in bioengineering.
我们可以用电来治愈人们吗?
  • 批准号:
    MR/X032159/1
  • 财政年份:
    2024
  • 资助金额:
    $ 79.84万
  • 项目类别:
    Fellowship
Bioelectronic materials and devices for smart drug delivery (BioEMat)
用于智能药物输送的生物电子材料和设备(BioEMat)
  • 批准号:
    EP/Y008529/1
  • 财政年份:
    2023
  • 资助金额:
    $ 79.84万
  • 项目类别:
    Research Grant
Multifunctional 3D Bioelectronic and Microfluidic Hybrid Systems for Online Monitoring, Regulation, and Vascularization of Organoids
用于在线监测、调节和类器官血管化的多功能 3D 生物电子和微流体混合系统
  • 批准号:
    10510946
  • 财政年份:
    2022
  • 资助金额:
    $ 79.84万
  • 项目类别:
Multifunctional 3D Bioelectronic and Microfluidic Hybrid Systems for Online Monitoring, Regulation, and Vascularization of Organoids
用于在线监测、调节和类器官血管化的多功能 3D 生物电子和微流体混合系统
  • 批准号:
    10688234
  • 财政年份:
    2022
  • 资助金额:
    $ 79.84万
  • 项目类别:
SMART BIOELECTRONIC IMPLANTS FOR CONTROLLED DELIVERY OF THERAPEUTIC PROTEINS IN VIVO AND ITS APPLICATION IN LONG-TERM TREATMENT OF HEMOPHILIA A
用于体内治疗性蛋白质控制输送的智能生物电子植入物及其在血友病 A 长期治疗中的应用
  • 批准号:
    10446179
  • 财政年份:
    2022
  • 资助金额:
    $ 79.84万
  • 项目类别:
SMART BIOELECTRONIC IMPLANTS FOR CONTROLLED DELIVERY OF THERAPEUTIC PROTEINS IN VIVO AND ITS APPLICATION IN LONG-TERM TREATMENT OF HEMOPHILIA A
用于体内治疗性蛋白质控制输送的智能生物电子植入物及其在血友病 A 长期治疗中的应用
  • 批准号:
    10615840
  • 财政年份:
    2022
  • 资助金额:
    $ 79.84万
  • 项目类别:
Cephalopod-Inspired Bioelectronic Control of Cellular Signaling
受头足类动物启发的细胞信号生物电子控制
  • 批准号:
    10246105
  • 财政年份:
    2021
  • 资助金额:
    $ 79.84万
  • 项目类别:
ASCENT: BioNet: A distributed network of bioelectronic devices for closed-loop control of physiological processes
ASCENT:BioNet:用于生理过程闭环控制的生物电子设备分布式网络
  • 批准号:
    2023849
  • 财政年份:
    2020
  • 资助金额:
    $ 79.84万
  • 项目类别:
    Standard Grant
Direct bioelectronic detection of SARS-CoV-2 from saliva using single-molecule field-effect transistor array
使用单分子场效应晶体管阵列直接生物电子检测唾液中的 SARS-CoV-2
  • 批准号:
    10266395
  • 财政年份:
    2020
  • 资助金额:
    $ 79.84万
  • 项目类别:
Direct bioelectronic detection of SARS-CoV-2 from saliva using single-molecule field-effect transistor array
使用单分子场效应晶体管阵列直接生物电子检测唾液中的 SARS-CoV-2
  • 批准号:
    10320987
  • 财政年份:
    2020
  • 资助金额:
    $ 79.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了