AMORPHOUS CHALCOGENIDE-BASED OPTOELECTRONIC PLATFORM FOR NEXT-GENERATION OPTOELECTRONIC TECHNOLOGIES
用于下一代光电技术的非晶硫族化物光电平台
基本信息
- 批准号:EP/I018417/1
- 负责人:
- 金额:$ 52.85万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Materials discovery, development and modification has been a key factor in developing the world we live in. The study of materials which exhibit electrical or optical properties has played a major role in enabling all of modern technology and in particular electronics, computing and communications. As these technologies have been developed existing materials have also been modified and pushed close to their limits of what is technical feasible. An example of this is the advances made in silicon (Si) based microelectronics which has led to speed, which relates to power of processing, becoming critical, with a reduction in the size of the microelectronics used to achieve this. This approach is ultimately limited as sizes reduce; thus alternative methods must be sought. Optical communication and data transfer is widely known as being much quicker as information can be moved at the speed of light. However, whenever it interacts with electronics, such as when broadband optical fibre is connected to a computer the data transfer and processing must slow down to the speed of the microelectronic processors. There is a strong desire and compelling argument therefore to develop an 'optoelectronic' technology which is a hybrid of the optical and electronic systems but without the current limitations imposed by the two current technologies working independently. This proposal will seek to apply one of the most developed materials modification tools that is fundamental to modern microelectronics, ion-implantation, to a class of materials that show unique potential for enabling future optoelectronic technologies. These materials, known as chalcogenides, are already widely used in applications such as photovoltaics (solar cells), memory (e.g. DVDs), and advanced optical devices (e.g. lasers). Currently however they are used solely as either electronic materials or optical materials, with different types of chalcogenides used for each. Their properties that allow use in these separate application types gives them the potential to be developed so that the excellent optical properties of one material can be combined with the excellent electronic properties of another and vice versa. One of the reasons that this has yet to be done is that it has proved to be extremely difficult to modify their electronic properties during the material preparation which typically involves melting at high temperatures. Anything that is added to the materials, referred to as doping, is ineffective under these conditions due to the ability of the material to reorder itself whilst melted to cancel out the desired effect. In this programme of work, we will modify the properties by introducing dopants into the chalcogenide materials below their melt temperature, thus not allowing the material to reorder. This will be undertaken using ion-implantation which allows precise control of the type of impurity introduced. As a result of this work, we will develop for the first time an understanding of how these unique materials can be modified in a controlled way. We will then use this to develop better models of the origin of the materials' electronic and optical properties which will allow us to develop optimised materials. We will also develop prototype devices that will lead the way to the development of a truly optoelectronic technology. This programme will establish the UK as leaders in this field and therefore directly contribute to the continuing growth of the knowledge economy. We will train the next generation of scientists and engineers in state-of-the-art techniques to ensure that the UK maintains the expertise base required for this, aim to ensure the impact of this work is maximised and accelerated where possible, and communicate the results widely including to all stakeholders in this research.
材料的发现、开发和修改一直是发展我们生活的世界的关键因素。对表现出电学或光学性质的材料的研究在实现所有现代技术,特别是电子、计算和通信方面发挥了重要作用。随着这些技术的发展,现有材料也得到了改进,并接近其技术上可行的极限。这方面的一个例子是基于硅(Si)的微电子技术的进步,这导致与处理能力有关的速度变得至关重要,用于实现这一点的微电子设备的尺寸减小。随着规模的减小,这种方法最终会受到限制;因此,必须寻求替代方法。众所周知,光通信和数据传输要快得多,因为信息可以以光速移动。然而,每当它与电子设备交互时,例如当宽带光纤连接到计算机时,数据传输和处理必须减慢到微电子处理器的速度。因此,有一种强烈的愿望和令人信服的论点,即开发一种光电子技术,它是光学和电子系统的混合体,但没有这两种当前独立工作的技术所造成的当前限制。这项提议将寻求将现代微电子学的基础--离子注入--最先进的材料改性工具之一应用到一类显示出实现未来光电子技术的独特潜力的材料上。这些被称为硫系化合物的材料已经被广泛应用于光伏(太阳能电池)、存储器(如DVD)和先进光学设备(如激光)。然而,目前它们只被用作电子材料或光学材料,每种材料都使用不同类型的硫化物。它们的性能允许在这些单独的应用类型中使用,这给了它们开发的潜力,使得一种材料的优良光学性能可以与另一种材料的优良电子性能相结合,反之亦然。尚未做到这一点的原因之一是,事实证明,在材料制备过程中修改它们的电子性质极其困难,这通常涉及高温熔化。添加到材料中的任何东西,称为掺杂,在这些条件下都是无效的,因为材料在熔化时能够重新排序,以抵消预期的效果。在这项工作计划中,我们将通过在硫化物材料中引入低于其熔体温度的掺杂剂来修改性能,从而不允许材料重新排序。这将通过离子注入进行,它允许精确控制引入的杂质类型。作为这项工作的结果,我们将第一次了解如何以受控的方式对这些独特的材料进行改性。然后,我们将利用这一点来开发更好的材料电子和光学性质来源的模型,这将使我们能够开发优化的材料。我们还将开发原型设备,引领真正的光电子技术的发展。该计划将使英国成为这一领域的领导者,从而直接促进知识经济的持续增长。我们将培训下一代科学家和工程师使用最先进的技术,以确保英国保持这方面所需的专业知识基础,旨在确保这项工作的影响最大化并在可能的情况下加速,并将结果广泛传达给包括这项研究的所有利益相关者。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Photo-Seebeck study of amorphous germanium-tellurium-oxide films
非晶氧化锗碲薄膜的光塞贝克研究
- DOI:10.1007/s10854-020-04702-y
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Gholizadeh A
- 通讯作者:Gholizadeh A
Frequency- and time-resolved photocurrents in vacuum-deposited stabilised a-Se films: the role of valence alternation defects
真空沉积稳定 a-Se 薄膜中的频率和时间分辨光电流:价态交替缺陷的作用
- DOI:10.1007/s10854-020-04111-1
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Jacobs J
- 通讯作者:Jacobs J
Electrical properties of Bi-implanted amorphous chalcogenide films
双注入非晶硫属化物薄膜的电性能
- DOI:10.1016/j.tsf.2015.05.036
- 发表时间:2015
- 期刊:
- 影响因子:2.1
- 作者:Fedorenko Y
- 通讯作者:Fedorenko Y
Deposition of elements for a thermoelectric generator via laser-induced forward transfer
通过激光诱导前向转移沉积热电发电机的元件
- DOI:
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Feinaeugle, M
- 通讯作者:Feinaeugle, M
Optical properties of large area WS2 grown by chemical vapor deposition.
通过化学气相沉积生长的大面积 WS2 的光学特性。
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:[]
- 通讯作者:[]
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Curry其他文献
Richard Curry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Curry', 18)}}的其他基金
Supporting World-Class Labs at the University of Manchester (2022)
支持曼彻斯特大学世界一流的实验室(2022)
- 批准号:
EP/X035093/1 - 财政年份:2023
- 资助金额:
$ 52.85万 - 项目类别:
Research Grant
Future Laser Manufacturing of Nanostructured Metal Oxide Semiconductors for Functional Materials and Devices
用于功能材料和器件的纳米结构金属氧化物半导体的未来激光制造
- 批准号:
EP/V008188/1 - 财政年份:2021
- 资助金额:
$ 52.85万 - 项目类别:
Research Grant
Nanoscale Advanced Materials Engineering
纳米先进材料工程
- 批准号:
EP/V001914/1 - 财政年份:2021
- 资助金额:
$ 52.85万 - 项目类别:
Research Grant
Magnetically-Doped III-V Semiconductor Nanostructures
磁掺杂 III-V 族半导体纳米结构
- 批准号:
NE/T014792/1 - 财政年份:2020
- 资助金额:
$ 52.85万 - 项目类别:
Research Grant
Cryogenic Ultrafast Scattering-type Terahertz-probe Optical-pump Microscopy (CUSTOM)
低温超快散射型太赫兹探针光泵显微镜(定制)
- 批准号:
EP/T01914X/1 - 财政年份:2020
- 资助金额:
$ 52.85万 - 项目类别:
Research Grant
Platform for Nanoscale Advanced Materials Engineering (P-NAME)
纳米先进材料工程平台 (P-NAME)
- 批准号:
EP/R025576/1 - 财政年份:2018
- 资助金额:
$ 52.85万 - 项目类别:
Research Grant
Development and Application of Non-Equilibrium Doping in Amorphous Chalcogenides
非晶硫族化物非平衡掺杂的研究进展及应用
- 批准号:
EP/N020057/2 - 财政年份:2017
- 资助金额:
$ 52.85万 - 项目类别:
Research Grant
Functional Nitride Nanocrystals for Quantum-Enhanced Technologies
用于量子增强技术的功能氮化物纳米晶体
- 批准号:
EP/M015513/2 - 财政年份:2017
- 资助金额:
$ 52.85万 - 项目类别:
Research Grant
Quantum technology capital: Multi-species single-ion implantation
量子技术资本:多物种单离子注入
- 批准号:
EP/N015215/1 - 财政年份:2016
- 资助金额:
$ 52.85万 - 项目类别:
Research Grant
Development and Application of Non-Equilibrium Doping in Amorphous Chalcogenides
非晶硫族化物非平衡掺杂的研究进展及应用
- 批准号:
EP/N020057/1 - 财政年份:2016
- 资助金额:
$ 52.85万 - 项目类别:
Research Grant
相似海外基金
Development of chalcogenide based monolithic thermoelectric generators for energy harvesting
用于能量收集的基于硫族化物的单片热电发电机的开发
- 批准号:
23K13270 - 财政年份:2023
- 资助金额:
$ 52.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A dual-layer flat panel x-ray detector based on an engineered amorphous chalcogenide alloy for quantifying coronary artery calcium
基于工程非晶硫属化物合金的双层平板 X 射线探测器,用于量化冠状动脉钙
- 批准号:
10698174 - 财政年份:2022
- 资助金额:
$ 52.85万 - 项目类别:
Chalcogenide-based nonlinear optical gyroscope
基于硫族化物的非线性光学陀螺仪
- 批准号:
2224065 - 财政年份:2022
- 资助金额:
$ 52.85万 - 项目类别:
Standard Grant
A dual-layer flat panel x-ray detector based on an engineered amorphous chalcogenide alloy for quantifying coronary artery calcium
基于工程非晶硫属化物合金的双层平板 X 射线探测器,用于量化冠状动脉钙
- 批准号:
10839539 - 财政年份:2022
- 资助金额:
$ 52.85万 - 项目类别:
A dual-layer flat panel x-ray detector based on an engineered amorphous chalcogenide alloy for quantifying coronary artery calcium
基于工程非晶硫属化物合金的双层平板 X 射线探测器,用于量化冠状动脉钙
- 批准号:
10504769 - 财政年份:2022
- 资助金额:
$ 52.85万 - 项目类别:
CAREER: Developing solution-based thin-film chalcogenide perovskites
职业:开发基于溶液的薄膜硫属化物钙钛矿
- 批准号:
2044859 - 财政年份:2021
- 资助金额:
$ 52.85万 - 项目类别:
Continuing Grant
Chemical and electronic states in chalcogenide-based electrocatalytic systems during CO2 reduction
CO2 还原过程中基于硫族化物的电催化系统的化学和电子态
- 批准号:
1800357 - 财政年份:2018
- 资助金额:
$ 52.85万 - 项目类别:
Standard Grant
Development of d-electron based phase change chalcogenide for next generation non-volatile memory
用于下一代非易失性存储器的基于 d 电子的相变硫属化物的开发
- 批准号:
18H02053 - 财政年份:2018
- 资助金额:
$ 52.85万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Chalkogenide-based Ionic Liquids in the Synthesis of Metal Chalcogenide and Interchalcogenide Materials near Room Temperature
硫族化物基离子液体在近室温合成金属硫族化物和硫族化物间材料中的应用
- 批准号:
376983425 - 财政年份:2017
- 资助金额:
$ 52.85万 - 项目类别:
Priority Programmes
Chromium Chalcogenide based Thermoelectrics
铬硫族化物基热电材料
- 批准号:
338007693 - 财政年份:2017
- 资助金额:
$ 52.85万 - 项目类别:
Research Grants