Semiconductor Integrated Quantum Optical Circuits

半导体集成量子光路

基本信息

  • 批准号:
    EP/J007544/1
  • 负责人:
  • 金额:
    $ 642.29万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

Applying the rules of quantum rather than classical physics makes big differences to how we can manipulate information. A classical 'bit' of data can have one of two values, '0' or '1'. Its quantum counterpart, the qubit, can be in a state which is a superposition of the two values, in the sense of having both values at the same time. This, along with entanglement (Einstein's 'spooky' action at a distance) could enable quantum computers to out-perform current computers by huge margins. However making such a machine is very difficult; it is challenging to control large quantum systems while simultaneously isolating them from their environment sufficiently well to be able to carry out a useful calculation. Currently, using a number of different sorts of hardware (trapped ions, atoms at nano-Kelvin temperatures, superconducting circuits, single photons in silicon waveguides), it is possible to perform some simple quantum algorithms on arrays of a few qubits. However, for all these systems, there are very significant challenges to scaling such demonstrators up into useful devices.We propose to develop quantum circuits using a different technology, III-V semiconductor materials (GaAs, AlGaAs, InGaAs etc). Our circuits will employ photons and electron spins as qubits, making use of the optical properties of the III-V materials to carry out the quantum operations. A big advantage of the III-V semiconductors is that a mature photonics technology with advanced fabrication capabilities already exists, which will enable us to put all the elements of a circuit on a single microchip. With this level of integration, our approach is intrinsically scalable. Our five year vision is to construct circuits containing all the basic building blocks required to achieve quantum information processing: single photon sources to generate photon qubits, communication channels between qubits, quantum logic gates, memories consisting of spin qubits, and on-chip single photon detectors.Circuits of this type could form the building blocks of future quantum computers, but they can also perform useful quantum functions outside the realm of large scale quantum computation. With this level of complexity, it is possible to build quantum repeaters that enable wide-scale secure quantum communication networking. There are also applications in quantum metrology, where the properties of quantum mechanics can be used to obtain precision beyond the fundamental limits imposed by classical physics. Potential areas that may benefit here are magnetic sensors and microscopy.To pursue this vision of an integrated quantum technology, we will have to push forward the state of the art in semiconductor physics and device fabrication. On the physics side, our expected highlights include demonstrating full control of the nuclear spins in a device, obtaining entanglement of remote qubits on a chip, creating photon blockade structures, where the presence of a single photon prevents any more from entering, and developing control of light-matter interactions on the scale of single quanta. The targets on the technology side are equally challenging and will include tuning of quantum dot properties to achieve tightly controlled emission properties, the growth of dots in defined positions for incorporation in optical cavities, and highly reproducible lithography to achieve efficient circuit performance. All these topics will be central to our goals and will be addressed within the proposal; in addition they have potential to be of significance for a wide range of related nanoscale photonic technologies.
应用量子而不是经典物理学的规则对我们如何操纵信息产生了很大的影响。一个经典的数据位可以有两个值之一,“0”或“1”。它的量子对应物(量子位)可以处于两个值的叠加状态,即同时具有两个值。这一点,再沿着纠缠(爱因斯坦在远处的“幽灵”行为),可以使量子计算机的性能大大超过目前的计算机。然而,制造这样的机器非常困难;控制大型量子系统,同时将它们与环境充分隔离,以便能够进行有用的计算,这是一项挑战。目前,使用许多不同种类的硬件(捕获离子,纳米开尔文温度下的原子,超导电路,硅波导中的单光子),可以在几个量子位的阵列上执行一些简单的量子算法。然而,对于所有这些系统,有非常重大的挑战,以扩大这些示威者到有用的设备。我们建议开发量子电路使用不同的技术,III-V族半导体材料(GaAs,AlGaAs,InGaAs等)。我们的电路将采用光子和电子自旋作为量子比特,利用III-V族材料的光学特性来进行量子操作。III-V族半导体的一大优势是已经存在具有先进制造能力的成熟光子技术,这将使我们能够将电路的所有元件放在单个微芯片上。有了这种级别的集成,我们的方法本质上是可扩展的。我们的五年愿景是构建包含实现量子信息处理所需的所有基本构建模块的电路:产生光子量子比特的单光子源、量子比特之间的通信信道、量子逻辑门、由自旋量子比特组成的存储器以及片上单光子探测器。这种类型的电路可以形成未来量子计算机的构建模块,但它们也可以在大规模量子计算领域之外执行有用的量子功能。有了这种复杂程度,就有可能构建量子中继器,实现大规模的安全量子通信网络。在量子计量学中也有应用,量子力学的性质可以用来获得超越经典物理学基本限制的精度。可能从中受益的潜在领域是磁传感器和显微镜。为了实现集成量子技术的愿景,我们必须推动半导体物理和器件制造的最新发展。在物理学方面,我们预期的亮点包括在设备中展示对核自旋的完全控制,在芯片上获得远程量子位的纠缠,创建光子封锁结构,其中单个光子的存在阻止任何更多的进入,以及在单量子尺度上开发光物质相互作用的控制。技术方面的目标同样具有挑战性,包括调整量子点特性以实现严格控制的发射特性、在定义位置生长量子点以纳入光学腔,以及高度可重复的光刻以实现高效的电路性能。所有这些主题都将是我们目标的核心,并将在提案中得到解决;此外,它们有可能对广泛的相关纳米光子技术具有重要意义。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Resonance fluorescence from a telecom-wavelength quantum dot
  • DOI:
    10.1063/1.4965845
  • 发表时间:
    2016-10-17
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Al-Khuzheyri, R.;Dada, A. C.;Gerardot, B. D.
  • 通讯作者:
    Gerardot, B. D.
Nuclear magnetic resonance inverse spectra of InGaAs quantum dots: Atomistic level structural information
InGaAs量子点的核磁共振反谱:原子级结构信息
  • DOI:
    10.48550/arxiv.1408.0373
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bulutay C
  • 通讯作者:
    Bulutay C
Logic gates with bright dissipative polariton solitons in Bragg cavity systems
  • DOI:
    10.1103/physrevb.92.174528
  • 发表时间:
    2015-11-24
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Cancellieri, E.;Chana, J. K.;Whittaker, D. M.
  • 通讯作者:
    Whittaker, D. M.
High-fidelity initialization of long-lived quantum dot hole spin qubits by reduced fine-structure splitting
  • DOI:
    10.1103/physrevb.92.121301
  • 发表时间:
    2015-06
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    A. Brash;L. Martins;Feng Liu;J. H. Quilter;A. Ramsay;M. S. Skolnick;A. M. Fox
  • 通讯作者:
    A. Brash;L. Martins;Feng Liu;J. H. Quilter;A. Ramsay;M. S. Skolnick;A. M. Fox
On-chip electrically controlled routing of photons from a single quantum dot
  • DOI:
    10.1063/1.4922041
  • 发表时间:
    2015-06-01
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Bentham, C.;Itskevich, I. E.;Wilson, L. R.
  • 通讯作者:
    Wilson, L. R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maurice Skolnick其他文献

Maurice Skolnick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maurice Skolnick', 18)}}的其他基金

Semiconductor Quantum Photonics: Control of Spin, Exciton and Photon Interactions by Nano-Photonic Design
半导体量子光子学:通过纳米光子设计控制自旋、激子和光子相互作用
  • 批准号:
    EP/N031776/1
  • 财政年份:
    2016
  • 资助金额:
    $ 642.29万
  • 项目类别:
    Research Grant
Quantum Technology Capital: Epitaxy Cluster Tool to Enable Next-Generation Quantum Dots for Quantum Technology Applications
量子技术资本:外延集群工具为量子技术应用提供下一代量子点
  • 批准号:
    EP/N01488X/1
  • 财政年份:
    2016
  • 资助金额:
    $ 642.29万
  • 项目类别:
    Research Grant
Optical Control of Quantum States in Semiconductor Nanostructures
半导体纳米结构中量子态的光学控制
  • 批准号:
    EP/G001642/1
  • 财政年份:
    2008
  • 资助金额:
    $ 642.29万
  • 项目类别:
    Research Grant
Senior Visiting Fellowship: Photonic Crystal Research
高级访问学者:光子晶体研究
  • 批准号:
    EP/D076145/1
  • 财政年份:
    2006
  • 资助金额:
    $ 642.29万
  • 项目类别:
    Research Grant

相似国自然基金

greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
焦虑症小鼠模型整合模式(Integrated) 行为和精细行为评价体系的构建
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Integrated sources of multiphoton entanglement for enabling quantum interconnects
职业:用于实现量子互连的多光子纠缠集成源
  • 批准号:
    2339469
  • 财政年份:
    2024
  • 资助金额:
    $ 642.29万
  • 项目类别:
    Continuing Grant
Development of Integrated Quantum Inspired Algorithms for Shapley Value based Fast and Interpretable Feature Subset Selection
基于 Shapley 值的快速且可解释的特征子集选择的集成量子启发算法的开发
  • 批准号:
    24K15089
  • 财政年份:
    2024
  • 资助金额:
    $ 642.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Efficient Integrated Photonic Phase Shifters for Data/Telecom and Quantum Applications
适用于数据/电信和量子应用的高效集成光子移相器
  • 批准号:
    EP/Y00082X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 642.29万
  • 项目类别:
    Research Grant
CAREER: Quantum Computing - Trapped ion QPU with integrated photonics
职业:量子计算 - 具有集成光子学的俘获离子 QPU
  • 批准号:
    2338369
  • 财政年份:
    2024
  • 资助金额:
    $ 642.29万
  • 项目类别:
    Continuing Grant
An advanced Platform for INtegrated Quantum photonics devices (PINQ)
集成量子光子器件的先进平台 (PINQ)
  • 批准号:
    EP/Y003837/1
  • 财政年份:
    2024
  • 资助金额:
    $ 642.29万
  • 项目类别:
    Fellowship
Collaborative Research: OAC Core: An Integrated Framework for Enabling Temporal-Reliable Quantum Learning on NISQ-era Devices
合作研究:OAC Core:在 NISQ 时代设备上实现时间可靠的量子学习的集成框架
  • 批准号:
    2311950
  • 财政年份:
    2023
  • 资助金额:
    $ 642.29万
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing: Scaling Quantum Photonic Circuits with Integrated Superconducting Detectors by 100×
EAGER:量子制造:使用集成超导探测器将量子光子电路扩展 100 倍
  • 批准号:
    2240501
  • 财政年份:
    2023
  • 资助金额:
    $ 642.29万
  • 项目类别:
    Standard Grant
FuSe-TG: Co-Design of Chiral Quantum Photonic Devices and Circuits Integrated with 2D Material Heterostructures
FuSe-TG:手性量子光子器件和与二维材料异质结构集成的电路的协同设计
  • 批准号:
    2235276
  • 财政年份:
    2023
  • 资助金额:
    $ 642.29万
  • 项目类别:
    Standard Grant
CAREER: Generation and detection of large-scale quantum entanglement on an integrated photonic chip
职业:在集成光子芯片上生成和检测大规模量子纠缠
  • 批准号:
    2238096
  • 财政年份:
    2023
  • 资助金额:
    $ 642.29万
  • 项目类别:
    Continuing Grant
Development of fundamental technologies for III-V semiconductor membrane photonic integrated circuits using quantum well intermixing
利用量子阱混合开发III-V族半导体膜光子集成电路基础技术
  • 批准号:
    23H00172
  • 财政年份:
    2023
  • 资助金额:
    $ 642.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了