Bioinspired vision processing for autonomous terrestrial locomotion

用于自主地面运动的仿生视觉处理

基本信息

  • 批准号:
    EP/J012025/1
  • 负责人:
  • 金额:
    $ 69.92万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

Land vehicles have been designed almost exclusively to use wheels whereas terrestrial animals almost exclusively use legs for locomotion. Wheeled systems can be fast and efficient on hard flat ground; leg based systems are more versatile and efficient on natural terrain. As we move towards a future of autonomous systems operating beyond the extent of the road network and on other planets it is likely that development of robust artificial leg-based locomotion will become increasingly important.At present, several limits of technology prevent the emergence of autonomous legged systems with biocomparable performance. Even if a system was to emerge that could walk, run, leap, and turn without falling over, the technology does not exist safely to guide it through complex terrain using vision. Typically research into using vision for autonomous locomotion is undertaken using available vehicle technology - suggesting that the emergence of high-performance, vision-guided legged systems might occur at some time following the emergence of a basic high performance legged vehicle platform. In a novel approach we will expedite the development of a vision control architecture for locomotion over complex terrain by using human subjects as high performance vehicle platforms.The visual scene captured using a head mounted camera will be processed to identify terrain characteristics known to be important for control of locomotion. A map of the terrain synthesised in 3D virtual space and updated in real-time is presented to the human using a virtual reality headset. The overall outcome measure will be the locomotion performance achieved by the humans using the system compared to that with no vision information available and with normal vision.There are many benefits of this approach: it will allow us to investigate how humans modulate gait paramters and limb mechanics to compensate for partial or unreliable inforamtion about the environment. It will provide insight into the integration of feedforward and feedback control of locomotion. It will allow us to determine the locomotion performance that is possible from a given amount and quality of visually derived information given a highly developed locomotor platform and thus to understand how these two components of a high performance locomotor sytem combine to determine overall performance.The basic principles and technologies establilsed during this project will be applicable to any land vehicle whether based on wheels or legs. Additionally, the processing of visual information for locomotion control is a special case of the more generalised task to search the ground for an object or visual feature. The technology developed in this project may be translated to other applications in which visually-guided autonomous function is required.
陆地交通工具的设计几乎完全使用轮子,而陆地动物几乎完全使用腿来移动。轮式系统在坚硬的平地上可以快速有效;基于腿的系统在自然地形上更加通用和有效。随着我们走向未来的自主系统运行的范围以外的道路网络和其他星球上很可能是强大的人工腿为基础的运动的发展将变得越来越重要。目前,技术的几个限制,防止出现自主腿系统的生物性能。即使出现了一个可以行走、奔跑、跳跃和转弯而不会摔倒的系统,也没有技术可以安全地使用视觉引导它通过复杂的地形。通常,使用视觉进行自主运动的研究是使用现有的车辆技术进行的-这表明高性能的视觉引导腿式系统的出现可能会在基本的高性能腿式车辆平台出现之后的某个时间出现。在一个新的方法中,我们将加快发展的视觉控制架构的复杂地形上的运动,使用人体作为高性能vehicle platforms.The视觉场景捕获使用头戴式摄像机将被处理,以确定已知的地形特征是重要的运动控制。在3D虚拟空间中合成并实时更新的地形地图使用虚拟现实耳机呈现给人类。总体结果的衡量将是人类使用该系统所实现的运动性能相比,没有视觉信息可用,并与正常view.There有很多好处,这种方法:它将使我们能够研究人类如何调节步态参数和肢体力学,以补偿部分或不可靠的信息有关的环境。它将提供深入了解整合的前馈和反馈控制的运动。它将使我们能够确定的运动性能,是可能的,从给定的数量和质量的视觉衍生信息给定一个高度发达的运动平台,从而了解如何这两个组成部分的高性能运动系统联合收割机结合起来,以确定整体performance.The的基本原则和技术establiled在这个项目将适用于任何陆地车辆,无论是基于车轮或腿。此外,用于运动控制的视觉信息的处理是在地面上搜索物体或视觉特征的更一般化任务的特殊情况。该项目中开发的技术可能会转化为其他需要视觉引导自主功能的应用。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns
Visual salience and priority estimation for locomotion using a deep convolutional neural network
使用深度卷积神经网络进行运动的视觉显着性和优先级估计
  • DOI:
    10.1109/icip.2016.7532628
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anantrasirichai N
  • 通讯作者:
    Anantrasirichai N
Robust texture features for blurred images using Undecimated Dual-Tree Complex Wavelets
Parameter optimisation for vision guided terrestrial locomotion: Multi-frame
视觉引导地面运动的参数优化:多帧
  • DOI:
    10.1109/icip.2015.7350950
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniels G
  • 通讯作者:
    Daniels G
Orientation estimation for planar textured surfaces based on complex wavelets
基于复小波的平面纹理表面取向估计
  • DOI:
    10.1109/icip.2014.7025682
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anantrasirichai N
  • 通讯作者:
    Anantrasirichai N
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

J Burn其他文献

J Burn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于SOPC的VisionTransformer模型AI推理系统实现研究
  • 批准号:
    2023JJ60221
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
老年人群视障风险VISION管控模式构建与实证研究
  • 批准号:
    71974198
  • 批准年份:
    2019
  • 资助金额:
    48.5 万元
  • 项目类别:
    面上项目

相似海外基金

RII Track-4:@NASA: Automating Character Extraction for Taxonomic Species Descriptions Using Neural Networks, Transformer, and Computer Vision Signal Processing Architectures
RII Track-4:@NASA:使用神经网络、变压器和计算机视觉信号处理架构自动提取分类物种描述的字符
  • 批准号:
    2327168
  • 财政年份:
    2024
  • 资助金额:
    $ 69.92万
  • 项目类别:
    Standard Grant
Pacemakers of Cholinergic Wave Activity in the Developing Retina
视网膜发育中胆碱能波活动的起搏器
  • 批准号:
    10653330
  • 财政年份:
    2023
  • 资助金额:
    $ 69.92万
  • 项目类别:
Recurrent Circuit Model of Neural Response Dynamics in V1
V1 中神经反应动力学的循环电路模型
  • 批准号:
    10710967
  • 财政年份:
    2023
  • 资助金额:
    $ 69.92万
  • 项目类别:
The Impact of Natural Locomotion on Visual Processing
自然运动对视觉处理的影响
  • 批准号:
    10607860
  • 财政年份:
    2023
  • 资助金额:
    $ 69.92万
  • 项目类别:
Active Social Vision: How the Brain Processes Visual Information During Natural Social Perception
主动社交视觉:大脑如何在自然社交感知过程中处理视觉信息
  • 批准号:
    10608251
  • 财政年份:
    2023
  • 资助金额:
    $ 69.92万
  • 项目类别:
Functional circuitry and computation of the visual thalamus
视觉丘脑的功能电路和计算
  • 批准号:
    10577537
  • 财政年份:
    2023
  • 资助金额:
    $ 69.92万
  • 项目类别:
Objective quantification of vitreous inflammation using optical coherence tomography
使用光学相干断层扫描客观量化玻璃体炎症
  • 批准号:
    10574348
  • 财政年份:
    2023
  • 资助金额:
    $ 69.92万
  • 项目类别:
Mechanisms of NMDAR contribution to traumatic injury in retinal ganglion cells
NMDAR对视网膜神经节细胞创伤性损伤的作用机制
  • 批准号:
    10570666
  • 财政年份:
    2023
  • 资助金额:
    $ 69.92万
  • 项目类别:
Investigating the Mechanism of Optic Nerve disorders associated with Down Syndrome
研究与唐氏综合症相关的视神经疾病的机制
  • 批准号:
    10658120
  • 财政年份:
    2023
  • 资助金额:
    $ 69.92万
  • 项目类别:
Interocular Suppression and Selective Attention in Amblyopia
弱视的眼间抑制和选择性注意
  • 批准号:
    10720187
  • 财政年份:
    2023
  • 资助金额:
    $ 69.92万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了