Green Brain: Computational Modelling of the Honeybee Brain
绿色大脑:蜜蜂大脑的计算模型
基本信息
- 批准号:EP/J019534/1
- 负责人:
- 金额:$ 84.17万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Building intelligent machines that can perform complex cognitive tasks as well as or better than the human brain is a long-standing challenge of modern science. This quest has seen one of its highlights when IBM's Deep Blue chess computer beat the world champion Kasparov in 1997. Despite its superior performance in chess, this system was however in no way similar to or as powerful and versatile as a brain. More recently the Blue Brain initiative, also partially funded by IBM, set out to build a real-scale model of a cortical column of the human brain, moving us closer to the goal of eventually building an artificial brain that works like its biological counterpart. In the Green Brain project we propose to build such an artificial brain, but of the smaller brain of the honeybee. We will work with the world-leading research group of Prof. Martin Giurfa in Toulouse, who are experts in all aspects of bee brain anatomy, physiology and bee cognition and behavior. Bees have a surprisingly large cognitive capacity including transfer of learned associations across sensory modalities, e.g. from smells to colors, and learning abstract concepts such as the categories of "the same" and "different". At the same time their brains are much smaller, structured and (proportionally) much better researched than the complex human brain. It is also much easier to perform invasive manipulations to dissect how different parts of the bee brain function.In the Green Brain project we will build detailed computer models of the two most important sensory systems of the bee, the senses of smell (olfactory system) and of sight (visual system). In doing so, we will incorporate existing data, models and principles and identify further how they give rise to the observed impressive cognitive abilities. We will then combine the sensory systems with learning models and models of sensory integration in close collaboration with the experts in the Giurfa lab to eventually build a full-scale model of the bee brain. This model will be implemented on state-of-the-art massively parallel graphical processing unit (GPU) based super-computers, a new technology spearheaded by NVIDIA Corporation who is supporting this project with GPU hardware donations. Using GPU computing will allow us to simulate our Green Brain model in real time, which will be essential for the final phase of the project when we will put the Green Brain to work as the brain of an autonomous flying robot. This is an important further advance over current work on brain models because it is becoming more and more clear that an essential aspect of brain function is that the brain is not acting in isolation but in constant interaction with the body and the environment. This concept of "embodiment" and its consequences for cognition are important insights of modern cognitive science and will become equally important for modern neuroscience. The outputs from the Green Brain project will have impacts in several academic areas. In the neurosciences it will advance the field of large scale brain models and our understanding of how information is processed in the sensory systems of bees. We will also contribute new tools for the use of modern GPU technology for artificial brains and employing them in bio-mimetic robotics. For the cognitive sciences we will contribute to the understanding of embodiment in biologically realistic model systems.Beyond academia, the development of autonomous flying robots may have applications in environmental exploration, search and rescue and artificial pollination. Developing a better understanding of the mechanisms underlying cognition may ultimately translate into greater insights into human cognition and cognitive disorders. Finally, developing a better understanding of the honeybee may prove to be important in its own right as bees are a key pollinator in most ecologies and hence a 'keystone species' and vital for food security.
构建能够执行复杂认知任务的智能机器以及或优于人类大脑是现代科学的长期挑战。1997年,IBM的深蓝国际象棋计算机击败了世界冠军卡斯帕罗夫,这是这一探索的亮点之一。尽管它在国际象棋中的表现上级,但这个系统却与大脑完全不同,也没有大脑那么强大和多才多艺。最近,蓝脑计划(Blue Brain initiative)也得到了IBM的部分资助,开始着手构建一个真实规模的人脑皮质柱模型,使我们更接近最终构建一个像生物大脑一样工作的人工大脑的目标。在“绿色大脑”项目中,我们打算建造这样一个人工大脑,但它是蜜蜂的小大脑。我们将与图卢兹的Martin Giurfa教授的世界领先的研究小组合作,他们是蜜蜂大脑解剖学,生理学以及蜜蜂认知和行为各个方面的专家。蜜蜂具有惊人的大认知能力,包括跨感官模式的学习关联的转移,例如从气味到颜色,以及学习抽象概念,例如“相同”和“不同”的类别。与此同时,他们的大脑比复杂的人类大脑小得多,结构化得多,而且(按比例)研究得更好。在绿色脑项目中,我们将建立蜜蜂两个最重要的感觉系统的详细计算机模型,即嗅觉(嗅觉系统)和视觉(视觉系统)。在此过程中,我们将整合现有的数据,模型和原则,并进一步确定它们如何产生所观察到的令人印象深刻的认知能力。然后,我们将联合收割机与Giurfa实验室的专家密切合作,将感觉系统与学习模型和感觉整合模型结合起来,最终建立一个完整的蜜蜂大脑模型。该模型将在最先进的基于大规模并行图形处理单元(GPU)的超级计算机上实现,这是由NVIDIA公司率先推出的一项新技术,该公司正在通过GPU硬件捐赠支持该项目。使用GPU计算将使我们能够真实的模拟我们的绿色大脑模型,这对于项目的最后阶段至关重要,届时我们将把绿色大脑作为自主飞行机器人的大脑。这是对目前大脑模型工作的一个重要的进一步进展,因为越来越清楚的是,大脑功能的一个重要方面是大脑不是孤立地起作用,而是与身体和环境不断相互作用。“具身”的概念及其对认知的影响是现代认知科学的重要见解,对现代神经科学也同样重要。“绿色大脑”项目的产出将在若干学术领域产生影响。在神经科学中,它将推进大规模大脑模型领域,以及我们对蜜蜂感觉系统中信息处理方式的理解。我们还将贡献新的工具,用于将现代GPU技术用于人工大脑,并将其用于仿生机器人。对于认知科学,我们将有助于理解在生物现实模型系统中的体现。在学术界之外,自主飞行机器人的发展可能会在环境勘探,搜索和救援以及人工授粉中应用。更好地理解认知的潜在机制可能最终转化为对人类认知和认知障碍的更深入了解。最后,更好地了解蜜蜂本身可能很重要,因为蜜蜂是大多数生态系统中的关键传粉者,因此是“关键物种”,对粮食安全至关重要。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Abstract concept learning in a simple neural network inspired by the insect brain.
- DOI:10.1371/journal.pcbi.1006435
- 发表时间:2018-09
- 期刊:
- 影响因子:4.3
- 作者:Cope AJ;Vasilaki E;Minors D;Sabo C;Marshall JAR;Barron AB
- 通讯作者:Barron AB
Abstract concept learning in a simple neural network inspired by the insect brain
受昆虫大脑启发的简单神经网络中的抽象概念学习
- DOI:10.1101/268375
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Cope A
- 通讯作者:Cope A
A Model for an Angular Velocity-Tuned Motion Detector Accounting for Deviations in the Corridor-Centering Response of the Bee.
- DOI:10.1371/journal.pcbi.1004887
- 发表时间:2016-05
- 期刊:
- 影响因子:4.3
- 作者:Cope AJ;Sabo C;Gurney K;Vasilaki E;Marshall JA
- 通讯作者:Marshall JA
A computational model of the integration of landmarks and motion in the insect central complex.
- DOI:10.1371/journal.pone.0172325
- 发表时间:2017
- 期刊:
- 影响因子:3.7
- 作者:Cope AJ;Sabo C;Vasilaki E;Barron AB;Marshall JA
- 通讯作者:Marshall JA
A neural model of the optomotor system accounts for ordered responses to decreasing stimulus spatial frequencies
- DOI:10.1186/1471-2202-16-s1-p159
- 发表时间:2015-12-18
- 期刊:
- 影响因子:2.4
- 作者:Cope A;Sabo C;Vasilaki E;Gurney K;Marshall JA
- 通讯作者:Marshall JA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Marshall其他文献
Development of patient-centric linguistically tailored psychoeducational messages to support nutrition and medication self-management in type 2 diabetes: a feasibility study
开发以患者为中心的语言定制心理教育信息,以支持 2 型糖尿病的营养和药物自我管理:可行性研究
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:2.2
- 作者:
R. Ellis;U. Connor;James Marshall - 通讯作者:
James Marshall
Evaluation and education: the ideal learning community
- DOI:
10.1007/bf00138912 - 发表时间:
1985-11-01 - 期刊:
- 影响因子:3.700
- 作者:
James Marshall;Michael Peters - 通讯作者:
Michael Peters
Optimal Training Sequences to Develop Lower Body Force, Velocity, Power, and Jump Height: A Systematic Review with Meta-Analysis
- DOI:
10.1007/s40279-021-01430-z - 发表时间:
2021-03-05 - 期刊:
- 影响因子:9.400
- 作者:
James Marshall;Chris Bishop;Anthony Turner;G. Gregory Haff - 通讯作者:
G. Gregory Haff
Precise Cache Profiling for Studying Radiation Effects
用于研究辐射效应的精确缓存分析
- DOI:
10.1145/3442339 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
James Marshall;Robert Gifford;Gedare Bloom;Gabriel Parmer;R. Simha - 通讯作者:
R. Simha
Governing educational research: A bicultural example
- DOI:
10.1007/bf03219595 - 发表时间:
1995-08-01 - 期刊:
- 影响因子:2.400
- 作者:
James Marshall;Michael Peters - 通讯作者:
Michael Peters
James Marshall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Marshall', 18)}}的其他基金
Collaborative Research: The AGEP California Hispanic Serving Institutions (HSI) Alliance to Increase Underrepresented Minority Faculty in STEM
合作研究:AGEP 加州拉美裔服务机构 (HSI) 联盟旨在增加 STEM 领域代表性不足的少数族裔教师数量
- 批准号:
1820876 - 财政年份:2018
- 资助金额:
$ 84.17万 - 项目类别:
Continuing Grant
Brains on Board: Neuromorphic Control of Flying Robots
机上大脑:飞行机器人的神经形态控制
- 批准号:
EP/P006094/1 - 财政年份:2016
- 资助金额:
$ 84.17万 - 项目类别:
Research Grant
Optimal Collective Decision-Making in Social Insects
社会性昆虫的最优集体决策
- 批准号:
BB/G02166X/2 - 财政年份:2010
- 资助金额:
$ 84.17万 - 项目类别:
Research Grant
Optimal Collective Decision-Making in Social Insects
社会性昆虫的最优集体决策
- 批准号:
BB/G02166X/1 - 财政年份:2009
- 资助金额:
$ 84.17万 - 项目类别:
Research Grant
Allene Directed Asymmetric Synthesis
丙二烯定向不对称合成
- 批准号:
9901319 - 财政年份:1999
- 资助金额:
$ 84.17万 - 项目类别:
Continuing Grant
Allene Directed Asymmetric Synthesis
丙二烯定向不对称合成
- 批准号:
9525974 - 财政年份:1996
- 资助金额:
$ 84.17万 - 项目类别:
Continuing Grant
Allene Directed Asymmetric Synthesis
丙二烯定向不对称合成
- 批准号:
9596180 - 财政年份:1995
- 资助金额:
$ 84.17万 - 项目类别:
Continuing Grant
Allene Directed Asymmetric Synthesis
丙二烯定向不对称合成
- 批准号:
9220166 - 财政年份:1993
- 资助金额:
$ 84.17万 - 项目类别:
Continuing Grant
Chiral Vinyloxiranes as Synthetic Intermediates
作为合成中间体的手性乙烯基环氧乙烷
- 批准号:
8912745 - 财政年份:1990
- 资助金额:
$ 84.17万 - 项目类别:
Continuing Grant
Chiral Vinyloxiranes as Synthetic Intermediates
作为合成中间体的手性乙烯基环氧乙烷
- 批准号:
8615569 - 财政年份:1986
- 资助金额:
$ 84.17万 - 项目类别:
Continuing Grant
相似国自然基金
Sitagliptin通过microbiota-gut-brain轴在2型糖尿病致阿尔茨海默样变中的脑保护作用机制
- 批准号:81801389
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
平扫描数据导引的超低剂量Brain-PCT成像新方法研究
- 批准号:81101046
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Realizing Human Brain Stimulation of Deep Regions Based on Novel Personalized Electrical Computational Modelling
基于新型个性化电计算模型实现人脑深部刺激
- 批准号:
23K25176 - 财政年份:2024
- 资助金额:
$ 84.17万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
PROFUSE: Fusing brain and computational mechanisms of prosocial behaviour across health, development and disorder
PROFUSE:融合健康、发育和疾病等亲社会行为的大脑和计算机制
- 批准号:
EP/X020215/1 - 财政年份:2023
- 资助金额:
$ 84.17万 - 项目类别:
Research Grant
Training program in computational approaches to brain and behavior
大脑和行为计算方法培训计划
- 批准号:
10746646 - 财政年份:2023
- 资助金额:
$ 84.17万 - 项目类别:
SCH: Using Data-Driven Computational Biomechanics to Disentangle Brain Structural Commonality, Variability, and Abnormality in ASD
SCH:利用数据驱动的计算生物力学来解开 ASD 中脑结构的共性、变异性和异常性
- 批准号:
10814620 - 财政年份:2023
- 资助金额:
$ 84.17万 - 项目类别:
Training program in computational approaches to brain and behavior
大脑和行为计算方法培训计划
- 批准号:
10879238 - 财政年份:2023
- 资助金额:
$ 84.17万 - 项目类别:
Rapid Diagnostic Imaging of Brain Metastases using Computational MRI
使用计算 MRI 进行脑转移瘤的快速诊断成像
- 批准号:
494945 - 财政年份:2023
- 资助金额:
$ 84.17万 - 项目类别:
Operating Grants
Integrating brain, neurocognitive, and computational tools in Opioid Use Disorder (OUD) to characterize executive function and to predict clinical outcomes
整合阿片类药物使用障碍 (OUD) 中的大脑、神经认知和计算工具来表征执行功能并预测临床结果
- 批准号:
10506495 - 财政年份:2023
- 资助金额:
$ 84.17万 - 项目类别:
Using Computational Neuroimaging and Extended Smartphone Assessment to Understand the Pathways Linking Threat-Related Brain Circuits to Alcohol Misuse Across Adulthood
使用计算神经影像和扩展智能手机评估来了解威胁相关大脑回路与成年期酒精滥用之间的联系途径
- 批准号:
10584969 - 财政年份:2023
- 资助金额:
$ 84.17万 - 项目类别:
Whole-brain computational modelling for the characterisation of and transition between brain states
用于表征大脑状态和之间转换的全脑计算模型
- 批准号:
2747395 - 财政年份:2022
- 资助金额:
$ 84.17万 - 项目类别:
Studentship
Computational brain dynamics in prosopagnosia
面部失认症的计算脑动力学
- 批准号:
573098-2022 - 财政年份:2022
- 资助金额:
$ 84.17万 - 项目类别:
University Undergraduate Student Research Awards