Cluster algebras, Coxeter groups and hyperbolic manifolds
簇代数、Coxeter 群和双曲流形
基本信息
- 批准号:EP/N005457/1
- 负责人:
- 金额:$ 22.95万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Coxeter groups appear in mathematics as symmetry groups of many objects, in particular, symmetry groups of regular polyhedra (the five Platonic solids known already to ancient Greeks) as well as symmetry groups of many tilings used both in art and real life. Cluster algebras is a very recent notion introduced by Fomin and Zelevinsky in 2002. Soon after that, it turned out that cluster algebras are connected to many other fields in mathematics, such as combinatorics of polytopes, representation theory, Poisson geometry, Teichmuller theory, integrable systems. These connections brought together researchers from many different branches of mathematics and mathematical physics, which induced amazingly rapid growth both of the theory of cluster algebras and of related fields.It was known since introduction of cluster algebras that some cluster algebras are connected to some Coxeter groups. More precisely, finite cluster algebras (the only ones which are finitely generated) are enumerated by finite crystallographic Coxeter groups. The first aim of this proposal is to push this correspondence further to the next complexity class of cluster algebras (called cluster algebras of finite mutation type and including a large class of cluster algebras arising from triangulated boardered surfaces). Algebras from this class should correspond to certain quotients of Coxeter group. For algebras arising from surfaces, the relations in the constructed group should correspond to certain paths on the surface.There are many natural questions arising once the correspondence between algebras and groups constructed. In particular, it is interesting to know if some of the groups constructed as quotients of Coxeter groups are Coxeter groups themselves? Can the constructed group be finite if the cluster algebra is not a finite one? Do different algebras induce different groups? How the obtained group is connected to the initial surface, in the case of a surface algebra?As one of the applications of the theory, we will construct finite volume hyperbolic manifolds with large symmetry groups.
考克斯特群在数学中作为许多对象的对称群出现,特别是正多面体的对称群(古希腊人已经知道的五个柏拉图立体)以及艺术和真实的生活中使用的许多瓷砖的对称群。簇代数是Fomin和Zelevinsky在2002年提出的一个非常新的概念。不久之后,事实证明,簇代数与数学中的许多其他领域有关,例如多面体组合学,表示论,泊松几何,Teichmuller理论,可积系统。这些联系汇集了来自数学和数学物理的许多不同分支的研究人员,这引起了令人惊讶的快速增长理论的集群代数和相关领域。这是已知的,因为介绍了集群代数,一些集群代数连接到一些考克斯特群。更确切地说,有限簇代数(唯一的那些是双生成的)是由有限晶体Coxeter群枚举的。这个建议的第一个目的是将这种对应进一步推到簇代数的下一个复杂类(称为有限突变型簇代数,包括由三角化边界曲面产生的一大类簇代数)。这类代数应该对应于Coxeter群的某些子代数。对于由曲面生成的代数,所构造的群中的关系应该对应于曲面上的某些路,一旦构造了代数与群之间的对应关系,就会产生许多自然问题。特别是,它是有趣的知道,如果一些组构造为coxeter群的替代品是Coxeter群本身?如果簇代数不是有限的,那么所构造的群能是有限的吗?不同的代数能导出不同的群吗?在曲面代数的情况下,所得到的群如何与初始曲面相连?作为理论的应用之一,我们将构造具有大对称群的有限体积双曲流形。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bases for cluster algebras from orbifolds with one marked point
来自具有一个标记点的轨道折叠的簇代数的基
- DOI:10.48550/arxiv.1711.00446
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Canakci Ilke
- 通讯作者:Canakci Ilke
Geometry of mutation classes of rank $3$ quivers
等级为 $3$ 的突变类别的几何结构
- DOI:10.48550/arxiv.1609.08828
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Felikson A
- 通讯作者:Felikson A
Cluster algebras and continued fractions
簇代数和连分数
- DOI:10.48550/arxiv.1608.06568
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Canakci Ilke
- 通讯作者:Canakci Ilke
CLUSTER ALGEBRAS FROM SURFACES AND EXTENDED AFFINE WEYL GROUPS
- DOI:10.1007/s00031-021-09647-y
- 发表时间:2020-08
- 期刊:
- 影响因子:0.7
- 作者:A. Felikson;John W. Lawson;M. Shapiro;P. Tumarkin
- 通讯作者:A. Felikson;John W. Lawson;M. Shapiro;P. Tumarkin
Acyclic cluster algebras, reflection groups, and curves on a punctured disc
非循环簇代数、反射群和穿孔圆盘上的曲线
- DOI:10.1016/j.aim.2018.10.020
- 发表时间:2018
- 期刊:
- 影响因子:1.7
- 作者:Felikson A
- 通讯作者:Felikson A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna Felikson其他文献
Coxeter polytopes with a unique pair of non-intersecting facets
- DOI:
10.1016/j.jcta.2008.10.008 - 发表时间:
2009-05-01 - 期刊:
- 影响因子:
- 作者:
Anna Felikson;Pavel Tumarkin - 通讯作者:
Pavel Tumarkin
Hyperbolic subalgebras of hyperbolic Kac–Moody algebras
- DOI:
10.1007/s00031-011-9169-y - 发表时间:
2011-12-29 - 期刊:
- 影响因子:0.400
- 作者:
Anna Felikson;Pavel Tumarkin - 通讯作者:
Pavel Tumarkin
Anna Felikson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
数学物理中精确可解模型的代数方法
- 批准号:11771015
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Amplituhedra, Cluster Algebras and Positive Geometry
会议:幅面体、簇代数和正几何
- 批准号:
2412346 - 财政年份:2024
- 资助金额:
$ 22.95万 - 项目类别:
Standard Grant
Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
- 批准号:
2401351 - 财政年份:2024
- 资助金额:
$ 22.95万 - 项目类别:
Standard Grant
Categorification and KLR algebras
分类和 KLR 代数
- 批准号:
DP240101809 - 财政年份:2024
- 资助金额:
$ 22.95万 - 项目类别:
Discovery Projects
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
- 批准号:
2340465 - 财政年份:2024
- 资助金额:
$ 22.95万 - 项目类别:
Continuing Grant
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
- 批准号:
2348843 - 财政年份:2024
- 资助金额:
$ 22.95万 - 项目类别:
Standard Grant
Quantum algebras with supersymmetries
具有超对称性的量子代数
- 批准号:
DP240101572 - 财政年份:2024
- 资助金额:
$ 22.95万 - 项目类别:
Discovery Projects
Entropy and Boundary Methods in von Neumann Algebras
冯诺依曼代数中的熵和边界方法
- 批准号:
2350049 - 财政年份:2024
- 资助金额:
$ 22.95万 - 项目类别:
Continuing Grant
Conference: Young Mathematicians in C*-Algebras 2024
会议:C*-代数中的青年数学家 2024
- 批准号:
2404675 - 财政年份:2024
- 资助金额:
$ 22.95万 - 项目类别:
Standard Grant
Shuffle algebras and vertex models
洗牌代数和顶点模型
- 批准号:
DP240101787 - 财政年份:2024
- 资助金额:
$ 22.95万 - 项目类别:
Discovery Projects
Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
- 批准号:
24K06756 - 财政年份:2024
- 资助金额:
$ 22.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




