Classifying spaces for proper actions and almost-flat manifolds
对空间进行分类以实现正确的操作和几乎平坦的流形
基本信息
- 批准号:EP/N033787/1
- 负责人:
- 金额:$ 12.63万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research, we will combine techniques from Geometric Group Theory, Topololgy, and Geometry to work on two objectives. In the last twenty years, non-positively curved spaces and groups have been at the forefront of Geometric Group Theory and Topology. Their importance is underlined by I. Agol's breakthrough solution of the Virtual Haken Conjecture of Thurston using the machinery of non-positively curved cube complexes developed by D. Wise. Also, in the last decade, the Baum-Connes and the Farrell-Jones Conjectures have been verified for many (non-positively curved) classes of groups, paving the way for computations in algebraic K- and L-theories via their classifying spaces. These conjectures connect many different fields of mathematics and have far reaching applications in Topology, Analysis, and Algebra. The time is therefore right to investigate (finiteness) properties of such groups and to construct models for classifying spaces for proper actions with geometric properties that are suitable for computations. Our first objective is to construct such models for classifying spaces of proper actions for some important classes of groups such as Coxeter groups and the outer automorphism group of right-angled Artin groups, and to investigate Brown's conjecture.Our second objective is on almost-flat manifolds. These manifolds are a generalisation of flat manifolds introduced by M. Gromov. They occur naturally in the study of Riemannian manifolds with negative sectional curvature and play a key role in the study of collapsing manifolds with uniformly bounded sectional curvature. The characteristic properties of these manifolds that we will investigate such as Spin structures and cobordisms play an integral part in modern manifold theory. Spin structures have many applications in Quantum Field Theory and in Mathematical Physics. In particular, the existence of a Spin structure on a smooth orientable manifold allows one to define spinor fields and a Dirac operator which can be thought of as the square root of the Laplacian. Dirac operator is essential in describing the behaviour of fermions in Particle Physics. It is also an important invariant in Pure Mathematics arising in Atiyah-Singer Index Theorem, Connes's Noncommutative Differential Geometry, the Schrodinger-Lichnerowicz formula, Kostant's cubic Dirac operator, and many other areas. The methods by which we propose to study almost-flat manifolds arise from the interactions between Geometry/Topology and Group Theory. This is largely due to the fact that the topology of these manifolds is completely classified by their fundamental groups.
在本研究中,我们将结合几何群论、拓扑学和几何学的联合收割机技术来实现两个目标。在过去的二十年里,非正曲空间和群一直处于几何群论和拓扑学的前沿。我强调了它们的重要性。Agol利用D。睿的此外,在过去的十年中,鲍姆-康纳斯猜想和法雷尔-琼斯猜想已经在许多(非正曲)群类中得到了验证,为代数K-和L-理论通过其分类空间的计算铺平了道路。这些代数连接了许多不同的数学领域,在拓扑学、分析学和代数学中有着深远的应用。因此,现在是时候调查(有限性)性质,这些群体和建设模型的分类空间适当的行动与几何性质,是适合于计算。我们的第一个目标是为一些重要的群类(如Coxeter群和直角Artin群的外自同构群)构造这样的模型来分类真作用空间,并研究Brown猜想;第二个目标是在几乎平坦流形上。这些流形是M.格罗莫夫它们自然地出现在具有负截面曲率的黎曼流形的研究中,并且在具有一致有界截面曲率的坍缩流形的研究中起着关键作用。我们将研究的这些流形的特征性质,如自旋结构和配边,在现代流形理论中起着不可或缺的作用。自旋结构在量子场论和数学物理中有许多应用。特别是,在光滑可定向流形上存在自旋结构允许定义旋量场和狄拉克算子,可以认为是拉普拉斯算子的平方根。狄拉克算符是粒子物理中描述费米子行为的基本算符。它也是纯数学中的一个重要不变量,出现在Atiyah-Singer指标定理、Connes的非交换微分几何、Schrodinger-Lichnerowicz公式、Kostant的三次狄拉克算子和许多其他领域。我们提出的研究几乎平坦流形的方法来自几何/拓扑和群论之间的相互作用。这在很大程度上是由于这些流形的拓扑结构完全由它们的基本群分类。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Classifying spaces for families of subgroups for systolic groups
收缩群子群家族的分类空间
- DOI:10.4171/ggd/461
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Osajda D
- 通讯作者:Osajda D
Cohomological and geometric invariants of simple complexes of groups
群的简单复形的上同调和几何不变量
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0.7
- 作者:Nansen Petrosyan
- 通讯作者:Nansen Petrosyan
Bestvina complex for group actions with a strict fundamental domain
Bestvina 综合体,用于具有严格基本领域的团体行动
- DOI:10.48550/arxiv.1712.07606
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Petrosyan Nansen
- 通讯作者:Petrosyan Nansen
Hierarchically cocompact classifying spaces for mapping class groups of surfaces CLASSIFYING SPACES FOR MAPPING CLASS GROUPS
用于映射曲面类组的层次紧致分类空间 用于映射类组的分类空间
- DOI:10.1112/blms.12166
- 发表时间:2018
- 期刊:
- 影响因子:0.9
- 作者:Nucinkis B
- 通讯作者:Nucinkis B
Commensurators of abelian subgroups in CAT(0) groups
CAT(0)群中阿贝尔子群的公度子
- DOI:10.1007/s00209-019-02449-9
- 发表时间:2019
- 期刊:
- 影响因子:0.8
- 作者:Huang J
- 通讯作者:Huang J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nansen Petrosyan其他文献
$\boldsymbol{\mathfrak{F}}$ -Structures and Bredon–Galois Cohomology
- DOI:
10.1007/s10485-012-9281-8 - 发表时间:
2012-04-04 - 期刊:
- 影响因子:0.500
- 作者:
Dieter Degrijse;Nansen Petrosyan - 通讯作者:
Nansen Petrosyan
Characteristic classes for cohomology of split Hopf algebra extensions
- DOI:
10.1016/j.jalgebra.2011.01.018 - 发表时间:
2011-04-15 - 期刊:
- 影响因子:
- 作者:
Dieter Degrijse;Nansen Petrosyan - 通讯作者:
Nansen Petrosyan
Nansen Petrosyan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Bergman空间上的Toeplitz算子及Hankel算子的性质
- 批准号:11126061
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
分形上的分析及其应用
- 批准号:10471150
- 批准年份:2004
- 资助金额:15.0 万元
- 项目类别:面上项目
相似海外基金
Opening Spaces and Places for the Inclusion of Indigenous Knowledge, Voice and Identity: Moving Indigenous People out of the Margins
为包容土著知识、声音和身份提供开放的空间和场所:使土著人民走出边缘
- 批准号:
477924 - 财政年份:2024
- 资助金额:
$ 12.63万 - 项目类别:
Salary Programs
Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
- 批准号:
EP/Y037162/1 - 财政年份:2024
- 资助金额:
$ 12.63万 - 项目类别:
Research Grant
INSPIRE- Intersectional Spaces of Participation: Inclusive, Resilient, Embedded
INSPIRE-交叉参与空间:包容性、弹性、嵌入式
- 批准号:
10106857 - 财政年份:2024
- 资助金额:
$ 12.63万 - 项目类别:
EU-Funded
LIB Sparks - Gases, sparks and flames - a numerical study of lithium-ion battery failure in closed spaces and its mitigation
LIB Sparks - 气体、火花和火焰 - 封闭空间内锂离子电池故障及其缓解的数值研究
- 批准号:
EP/Y027639/1 - 财政年份:2024
- 资助金额:
$ 12.63万 - 项目类别:
Fellowship
DDRIG: Cementing Spaces: The Material That Made Room for New Cultures in the Twentieth-Century
DDRIG:水泥空间:为二十世纪新文化腾出空间的材料
- 批准号:
2341731 - 财政年份:2024
- 资助金额:
$ 12.63万 - 项目类别:
Standard Grant
Shared Spaces: The How, When, and Why of Adolescent Intergroup Interactions
共享空间:青少年群体间互动的方式、时间和原因
- 批准号:
ES/T014709/2 - 财政年份:2024
- 资助金额:
$ 12.63万 - 项目类别:
Research Grant
INSPIRE - Intersectional Spaces of Participation: Inclusive, Resilient, Embedded
INSPIRE - 交叉参与空间:包容性、弹性、嵌入式
- 批准号:
10091666 - 财政年份:2024
- 资助金额:
$ 12.63万 - 项目类别:
EU-Funded
Geometric evolution of spaces with symmetries
具有对称性的空间的几何演化
- 批准号:
DP240101772 - 财政年份:2024
- 资助金额:
$ 12.63万 - 项目类别:
Discovery Projects
Spread through air spaces (STAS) の分子学的特性と発現機序の解明
阐明空气传播(STAS)的分子特征和表达机制
- 批准号:
24K19434 - 财政年份:2024
- 资助金额:
$ 12.63万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Other Rome: Centring People and Spaces of Maintenance
另一个罗马:以人员和维护空间为中心
- 批准号:
AH/Y000277/1 - 财政年份:2024
- 资助金额:
$ 12.63万 - 项目类别:
Fellowship