In-situ Interference lithography: a new manufacturing approach for the production of nanostructured arrays
原位干涉光刻:一种生产纳米结构阵列的新制造方法
基本信息
- 批准号:EP/P027822/1
- 负责人:
- 金额:$ 99.89万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Information processing and communications enabled by advances in semiconductor technology are at the heart of the modern interconnected and application-driven world. Modern society has an enormous appetite for new platforms and services and meeting these demands places a considerable burden on device and systems development. Over the last 50 years, semiconductor manufacturing has met these demands through a scaling of device size to ever smaller dimensions. As a result, we now approach the true nanoscale regime and seek devices of size less than 10nm. The industry is however facing enormous technological and physical challenges to work at this precise scale, equivalent to only a few atomic layers. Yet with these challenges comes also enormous potential from emerging quantum device approaches which could dramatically increase in calculation capability, dramatically improve the security of data and to do this simultaneously with lower energy costs. Our well used semiconductor device production processes, based on epitaxy, patterning and etch will struggle to turn the promise of quantum technologies into manufacturable commercial devices. In contrast, we can grow naturally 'self assembled' structures with nanometer dimensions and from such materials we have extensively demonstrated quantum interactions. However self-assembly has an Achilles heel in that we cannot control the site or the dimensions because of random nucleation. As a result we cannot predict where the nanostructure is located nor its energy state. Unsurprisingly there has been very little development in terms of manufacturable devices utilising quantum technologies. What we need is an approach which combines the best aspects of patterning and self-assembly. The approach is directed (or site-controlled) self-assembly which uses lithography to define the site and then exploits self-assembly to produce the nanostructure.Structuring with light is the manufacturing technology of the 21st century. Many products now involve cutting, milling, surface processing, sealing etc processes using laser light. Our approach seeks to exploit the capabilities of light at much smaller dimensions, specifically its capability to create regular patterns on a very small stage through the optical interference process. We will design and build a system in which laser interference interacts with semiconductor growth to create a single step in-situ manufacturing route which is free of all major limitations of conventional high cost, low throughput nanostructuring approaches. We will build and demonstrate a custom instrument in which an interference pattern from laser interference interacts with the semiconductor growth surface to nucleate self-assembled growth on a regular grid pattern. Such an arrangement is a key requirement for developing electronic and photonic circuits based on arrays of single nanostructures. The method has the further advantage of precisely controlling assembly such that the array contains identical nanostructures in terms of size, shape and electronic properties. Using this approach we will create large area state of the art quantum dot and quantum wire arrays which are essential building blocks for the semiconductor devices of the future, enabling diverse applications including electronics, photonics, sensing and biomedicine.
半导体技术的进步使信息处理和通信成为现代互联和应用驱动的世界的核心。现代社会对新的平台和服务有着巨大的需求,满足这些需求给设备和系统开发带来了相当大的负担。在过去的50年里,半导体制造业通过将器件尺寸缩小到更小的尺寸来满足这些需求。因此,我们现在接近真正的纳米尺度,并寻找尺寸小于10纳米的设备。然而,该行业面临着巨大的技术和物理挑战,要在这种精确的规模上工作,只相当于几个原子层。然而,随着这些挑战的出现,新兴的量子设备方法也带来了巨大的潜力,这些方法可以大幅提高计算能力,显著提高数据的安全性,并以更低的能源成本同时做到这一点。我们基于外延、图案化和蚀刻的半导体设备生产工艺得到了很好的应用,将难以将量子技术的前景转化为可制造的商业设备。相比之下,我们可以自然地生长出纳米尺寸的自组装结构,并且从这种材料中我们已经广泛地展示了量子相互作用。然而,自组装有一个致命弱点,因为我们无法控制位置或尺寸,因为随机成核。因此,我们无法预测纳米结构的位置,也无法预测其能量状态。不出所料,在利用量子技术的可制造设备方面,几乎没有什么进展。我们需要的是一种结合了构图和自组装的最佳方面的方法。这种方法是定向(或位置控制)自组装,它使用光刻来定义位置,然后利用自组装来制造纳米结构。用光构建是21世纪的制造技术。许多产品现在涉及使用激光的切割、铣削、表面加工、封口等工艺。我们的方法试图利用尺寸小得多的光的能力,特别是它通过光学干涉过程在非常小的舞台上产生规则图案的能力。我们将设计和建立一个激光干涉与半导体生长相互作用的系统,以创建一步原位制造路线,该路线不受传统高成本、低产量纳米结构方法的所有主要限制。我们将建立和演示一个定制的仪器,其中来自激光干涉的干涉图案与半导体生长表面相互作用,以在规则的栅格图案上成核自组装生长。这种布置是开发基于单纳米结构阵列的电子和光子电路的关键要求。该方法还具有精确控制组装的优点,使得阵列在尺寸、形状和电子性质方面包含相同的纳米结构。使用这种方法,我们将创建大面积最先进的量子点和量子线阵列,它们是未来半导体设备的基本构建块,使包括电子、光子学、传感和生物医学在内的各种应用成为可能。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Formation of laterally ordered quantum dot molecules by in situ nanosecond laser interference
原位纳秒激光干涉形成横向有序量子点分子
- DOI:10.1063/5.0009847
- 发表时间:2020-05
- 期刊:
- 影响因子:4
- 作者:Yunran Wang;Im Sik Han;Chaoyuan Jin;Mark Hopkinson
- 通讯作者:Mark Hopkinson
Ordered GaAs quantum dots by droplet epitaxy using in situ direct laser interference patterning
- DOI:10.1063/5.0045817
- 发表时间:2021-04-05
- 期刊:
- 影响因子:4
- 作者:Han, Im Sik;Wang, Yun-Ran;Hopkinson, Mark
- 通讯作者:Hopkinson, Mark
Broadband, wide-angle antireflection in GaAs through surface nano-structuring for solar cell applications
通过表面纳米结构在砷化镓中实现宽带、广角减反射,用于太阳能电池应用
- DOI:10.1038/s41598-020-63327-7
- 发表时间:2020-04-14
- 期刊:
- 影响因子:4.6
- 作者:Behera, Saraswati;Fry, Paul W.;Hopkinson, Mark
- 通讯作者:Hopkinson, Mark
Thermodynamic processes on a semiconductor surface during in-situ multi-beam laser interference patterning
原位多光束激光干涉图案化过程中半导体表面的热力学过程
- DOI:10.1049/iet-opt.2018.5028
- 发表时间:2019
- 期刊:
- 影响因子:1.6
- 作者:Wang Yun Ran;Jin Chao Yuan;Ho Chih Hua;Chen Si;Francis Henry;Hopkinson Mark
- 通讯作者:Hopkinson Mark
A lithographic approach for quantum dot-photonic crystal nanocavity coupling in dilute nitrides
稀氮化物中量子点-光子晶体纳米腔耦合的光刻方法
- DOI:10.1016/j.mee.2016.12.003
- 发表时间:2017
- 期刊:
- 影响因子:2.3
- 作者:Pettinari G
- 通讯作者:Pettinari G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Hopkinson其他文献
Formation of laterally ordered quantum dot molecules by in situ nanosecond laser interference
- DOI:
https://doi.org/10.1063/5.0009847 - 发表时间:
2020 - 期刊:
- 影响因子:
- 作者:
Yunran Wang;Im Sik Han;Chaoyuan Jin;Mark Hopkinson - 通讯作者:
Mark Hopkinson
Broadband, wide-angle antireflection in GaAs through surface nanostructuring for solar cell application
- DOI:
https://doi.org/10.1038/s41598-020-63327-7 - 发表时间:
2020 - 期刊:
- 影响因子:4.6
- 作者:
Saraswati Behera;Paul W. Fry;Henry Francis;Chaoyuan Jin;Mark Hopkinson - 通讯作者:
Mark Hopkinson
Precise Arrays of Epitaxial Quantum Dots Nucleated by In-Situ Laser Interference for Quantum Information Technology Applications
通过原位激光干涉成核的精确外延量子点阵列,用于量子信息技术应用
- DOI:
10.1021/acsanm.0c00738 - 发表时间:
2020 - 期刊:
- 影响因子:5.9
- 作者:
Yunran Wang;Im Sik Han;Chaoyuan Jin;Mark Hopkinson - 通讯作者:
Mark Hopkinson
Extracellular pH is a critical regulator of osteoclast fusion, size and activation
细胞外pH是破骨细胞融合、大小和活化的关键调节因子
- DOI:
10.1016/j.bone.2025.117466 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:3.600
- 作者:
Bethan K. Davies;Andrew J. Skelton;Mark Hopkinson;Simon Lumb;Gill Holdsworth;Timothy R. Arnett;Isabel R. Orriss - 通讯作者:
Isabel R. Orriss
Fabrication of sub-micrometer periodic nanostructures using pulsed laser interference for efficient light trapping in optoelectronic devices
使用脉冲激光干涉制造亚微米周期性纳米结构,以在光电器件中有效捕获光
- DOI:
10.1117/12.2546212 - 发表时间:
2020-03 - 期刊:
- 影响因子:0
- 作者:
Saraswati Behera;Yunran Wang;Im Sik Han;Chaoyuan Jin;Mark Hopkinson - 通讯作者:
Mark Hopkinson
Mark Hopkinson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Hopkinson', 18)}}的其他基金
Photonic integration using Laser interference structured substrates
使用激光干涉结构化基板的光子集成
- 批准号:
EP/X016838/1 - 财政年份:2022
- 资助金额:
$ 99.89万 - 项目类别:
Research Grant
SBIR Phase I: An Innovative Treatment Process for Nitrate Removal from Water
SBIR 第一阶段:去除水中硝酸盐的创新处理工艺
- 批准号:
1621986 - 财政年份:2016
- 资助金额:
$ 99.89万 - 项目类别:
Standard Grant
相似国自然基金
基于非分裂神经元系统的CRISPR interference作用机制及应用研究
- 批准号:31771482
- 批准年份:2017
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Laser Interference Lithography based 4D-printing of Nanomaterials
基于激光干涉光刻的纳米材料 4D 打印
- 批准号:
EP/X038203/1 - 财政年份:2023
- 资助金额:
$ 99.89万 - 项目类别:
Research Grant
Laser Interference Lithography based 4D-printing of Nanomaterials
基于激光干涉光刻的纳米材料 4D 打印
- 批准号:
EP/X038025/1 - 财政年份:2023
- 资助金额:
$ 99.89万 - 项目类别:
Research Grant
Beyond direct-write: Dynamically reconfigurable holographic multibeam interference lithography for high-throughput nanomanufacturing
超越直写:用于高通量纳米制造的动态可重构全息多束干涉光刻
- 批准号:
2719982 - 财政年份:2022
- 资助金额:
$ 99.89万 - 项目类别:
Studentship
Beyond direct-write: Dynamically reconfigurable holographic multibeam interference lithography for high-throughput nanomanufacturing
超越直写:用于高通量纳米制造的动态可重构全息多束干涉光刻
- 批准号:
EP/V055003/1 - 财政年份:2022
- 资助金额:
$ 99.89万 - 项目类别:
Research Grant
Holographic Interference Lithography for Microbattery Applications
用于微电池应用的全息干涉光刻
- 批准号:
2606929 - 财政年份:2021
- 资助金额:
$ 99.89万 - 项目类别:
Studentship
Materials systems for engineering optical and fluidic devices fabricated via three-dimensional nanoscale interference lithography
通过三维纳米级干涉光刻制造的工程光学和流体设备的材料系统
- 批准号:
418611-2013 - 财政年份:2017
- 资助金额:
$ 99.89万 - 项目类别:
Discovery Grants Program - Individual
Materials systems for engineering optical and fluidic devices fabricated via three-dimensional nanoscale interference lithography
通过三维纳米级干涉光刻制造的工程光学和流体设备的材料系统
- 批准号:
418611-2013 - 财政年份:2016
- 资助金额:
$ 99.89万 - 项目类别:
Discovery Grants Program - Individual
Materials systems for engineering optical and fluidic devices fabricated via three-dimensional nanoscale interference lithography
通过三维纳米级干涉光刻制造的工程光学和流体设备的材料系统
- 批准号:
418611-2013 - 财政年份:2015
- 资助金额:
$ 99.89万 - 项目类别:
Discovery Grants Program - Individual
Materials systems for engineering optical and fluidic devices fabricated via three-dimensional nanoscale interference lithography
通过三维纳米级干涉光刻制造的工程光学和流体设备的材料系统
- 批准号:
418611-2013 - 财政年份:2014
- 资助金额:
$ 99.89万 - 项目类别:
Discovery Grants Program - Individual
Materials systems for engineering optical and fluidic devices fabricated via three-dimensional nanoscale interference lithography
通过三维纳米级干涉光刻制造的工程光学和流体设备的材料系统
- 批准号:
418611-2013 - 财政年份:2013
- 资助金额:
$ 99.89万 - 项目类别:
Discovery Grants Program - Individual