BO-and Monolithic Quantum Dot Semiconductor Optical Amplifier on Silicon
硅基 BO 和单片量子点半导体光放大器
基本信息
- 批准号:EP/T01394X/1
- 负责人:
- 金额:$ 34.03万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
From an Information and Communication Technology (ICT) perspective, the 21st century is characterized by an explosion of requests for communication capabilities, high-performance computing, and cloud storage. Over the last few years, global Internet traffic has been growing exponentially. In this picture, transporting such an amount of data with existing electrical- interconnects and switching technologies will soon reach the "bottleneck" in terms of thermal loading, capacity, latency and power consumption. Optical- interconnects and switch fabrics combined with photonic integrated circuits (PICs) are seen as one of the most promising routes to push such limits. Silicon (Si) photonics is now considered as a reliable photonic integration platform. The beauty of Si Photonics stems from its ability to integrate microelectronics and photonics on a single Si chip utilizing standard CMOS IC technology. An important subset of this area is hetero-integration of III-Vs on Si, where the aim is the make use of III-V materials, with superior optical properties, to provide an efficient optical gain medium to circumvent the fundamental physical limitation of Si, i.e. Si cannot efficiently emit light, yet keeping the capability of light-routing, modulating, detecting and cost advantages of Si. In a breakthrough development, the investigators' group in UCL have shown that it is possible to grow epitaxially high-performance quantum dot (QD) lasers directly on Si substrates, opening up the possibility to monolithically integrate various types of III-V optoelectronic devices on Si. The pace of research on monolithic III-V/Si integration has then been dramatically accelerated and an increasing number of prestigious research groups including Bowers' group at UCSB and Arakawa's group at Tokyo University, and major Si chip companies, i.e. Intel, are currently devoting considerable programmes in this area. In addition to III-V/Si lasers, monolithic III-V/Si semiconductor optical amplifiers (SOAs) are also attracting significant interest as the key components for next-generation photonic integrated optical- interconnects and switching fabrics, as the application of SOAs is not limited only to compensate for loss and maintain signal levels as the signal propagates throughout a large number of optical components within the PICs, it is also used as a mature gating element for optical switches and has the advantages of ease of control, smaller footprint, low operating voltage, high ON/OFF extinction ratio, and fast transition times of the order of nanoseconds. However, such a III-V/Si SOA has not been developed to date. Building on the established expertise in monolithic III-V/Si QD lasers at UCL, this project proposal aims to develop the world's first monolithic III-V QD SOA on CMOS-compatible on-axis Si (001) substrates. In contrast to conventional native substrate based SOAs or III-V/Si SOAs using either flip-chip bonding or wafer bonding, the proposed method is fundamentally different, since the III-V SOAs will be integrated on Si by direct epitaxial methods, offering the possibility to achieve high-yield, low-cost and large-scale Si-based PICs, which is expected to be the technology platform to address next-generation optical- interconnect and switching solutions. With further development in Si photonics, i.e., providing the microelectronics world with the ultra-large-scale integration of photonic components, there will be scope to target applications in important areas such as consumer electronics, high-performance computing, medical and sensor solutions, and defence. This project will benefit from guidance from and joint work with both industrial as well as academic partners and will leverage major UK-based industrial and academic strengths in materials (e.g., CSC, EPSRC NEF) device processing (e.g., EPSRC CSHub, Glasgow) and photonics (e.g., Rockley, Lumentum), who are also well positioned to exploit this research.
从信息和通信技术(ICT)的角度来看,21世纪的特点是爆炸了通信能力,高性能计算和云存储的请求。在过去的几年中,全球互联网流量一直在成倍增长。在这张照片中,通过现有的电气互连和开关技术运输大量数据,就很快就可以在热载,容量,潜伏期和功耗方面达到“瓶颈”。光学互连和开关织物与光子积分电路(图片)相结合,被视为推动此类限制的最有希望的路线之一。现在,硅(SI)光子学被认为是可靠的光子积分平台。 Si光子学的美丽源于其在使用标准CMOS IC技术的单个SI芯片上整合微电子和光子学的能力。该领域的一个重要子集是III-VS在SI上的异质集成,其目的是利用III-V材料,具有出色的光学特性,以提供有效的光学增益培养基来规避Si的基本局限性,即Si无法有效地发光,又可以发出光线,以保持轻度重组的能力,以确保si的能力。 在突破性的发展中,UCL的研究人员组表明,可以直接在SI底物上生长外延高性高性能量子点(QD)激光器,从而打开了单层整合SI上各种类型的IIII-V OptoElectRonic设备的可能性。然后,对整体III-V/SI整合的研究的步伐已经大大加速,并且越来越多的著名研究小组包括UCSB的Bowers小组和东京大学的Arakawa集团,以及Intel主要的SI Chip Companies,即目前正在该地区提供相当大的计划。除III-V/SI激光器外,整体式III-V/SI半导体光学放大器(SOA)也引起了重大兴趣,作为下一代光子光子相互连接和切换织物的关键组成部分,作为在SOAS中的应用和维持较大的信号水平的应用,这也不仅限于ITS SIDICS,因此在整个信号中的应用也不仅限于IT范围的构图,因此在整个IS SISS的应用中也是如此。作为光学开关的成熟门控元件,具有易于控制的优势,较小的占地面积,低工作电压,高/关闭灭绝比以及纳米秒订单的快速过渡时间。但是,迄今为止尚未开发这种III-V/SI SOA。 该项目提案旨在开发世界上第一个关于CMOS兼容的轴上SI(001)底物的全球首个整体IIII-V QD SOA,旨在开发世界上第一个全球第一块整体IIII-V QD SOA。与使用翻转芯片键合或晶圆粘结的常规基于天然底物或III-V/SI SOA相比,提出的方法在根本上是不同的,因为III-V SOA将通过直接的外在方法在SI上进行整合,通过直接的外观上的方法,可以实现高分子和大尺度SI的PECTOS,以便于实现高分子和大型SI的PICS,以便于该技术相关,以至于预期的是技术,以至于预期的是该技术的技术,以至于预期的是该技术的技术。切换解决方案。随着Si Photonics的进一步发展,即,为微型组件的超大规模整合提供了光子成分的超大尺度整合,将在重要领域的目标应用程序(例如消费电子,高性能计算,高性能计算,医疗和传感器解决方案以及防御)中存在范围。 该项目将受益于工业和学术合作伙伴的指导和联合合作,并将利用材料的主要工业和学术优势(例如CSC,EPSRC NEF)设备处理(例如EPSRC CSHUB,GLASGOW,GLASGOW)和PHOTONICS和PHOTONICS(例如,Rockley,Loctley,Lumberme),他们也可以实现这项研究。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electrically pumped continuous-wave O-band quantum-dot superluminescent diode on silicon.
- DOI:10.1364/ol.401042
- 发表时间:2020-09
- 期刊:
- 影响因子:3.6
- 作者:Ying Lu;Victoria Cao;M. Liao;Wei Li;M. Tang;Ang Li;P. Smowton;A. Seeds;Huiyun Liu;Siming Chen
- 通讯作者:Ying Lu;Victoria Cao;M. Liao;Wei Li;M. Tang;Ang Li;P. Smowton;A. Seeds;Huiyun Liu;Siming Chen
Theoretical analysis and modelling of degradation for III-V lasers on Si
Si 上 III-V 激光器退化的理论分析和建模
- DOI:10.1088/1361-6463/ac83d3
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Liu J
- 通讯作者:Liu J
Recent Progress of Quantum Dot Lasers Monolithically Integrated on Si Platform
- DOI:10.3389/fphy.2022.839953
- 发表时间:2022-02-14
- 期刊:
- 影响因子:3.1
- 作者:Cao, Victoria;Park, Jae-Seong;Liu, Huiyun
- 通讯作者:Liu, Huiyun
Distortion-free amplification of 100 GHz mode-locked optical frequency comb using quantum dot technology.
使用量子点技术对 100 GHz 锁模光学频率梳进行无失真放大。
- DOI:10.1364/oe.486707
- 发表时间:2023
- 期刊:
- 影响因子:3.8
- 作者:Cao V
- 通讯作者:Cao V
Long-wavelength InAs/InAlGaAs quantum dot microdisk lasers on InP (001) substrate
InP (001) 衬底上的长波长 InAs/InAlGaAs 量子点微盘激光器
- DOI:10.1063/5.0142391
- 发表时间:2023
- 期刊:
- 影响因子:4
- 作者:Jia H
- 通讯作者:Jia H
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Siming Chen其他文献
Monolithically Integrated Microcavity Lasers on Silicon
硅上单片集成微腔激光器
- DOI:
10.1109/acp55869.2022.10089139 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yuanhao Gong;Wentao Xie;Yaoran Huang;Taojie Zhou;Jingwen Ma;M. Tang;Xian;Siming Chen;Huiyun Liu;Zhaoyu Zhang - 通讯作者:
Zhaoyu Zhang
Rapid identification of ultrathin amorphous damage on monocrystalline silicon surface
单晶硅表面超薄非晶损伤的快速识别
- DOI:
10.1039/d0cp01370f - 发表时间:
2020 - 期刊:
- 影响因子:3.3
- 作者:
Lei Wu;Bingjun Yu;Pei Zhang;Chengqiang Feng;Peng Chen;Liang Deng;Jian Gao;Siming Chen;Shulan Jiang;Linmao Qian - 通讯作者:
Linmao Qian
Silicon-based III-V quantum dot devices for silicon photonics
用于硅光子学的硅基 III-V 量子点器件
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
M. Tang;Siming Chen;Jiang Wu;M. Liao;Huiyun Liu - 通讯作者:
Huiyun Liu
Unlocking new potentials in energy-efficient carbon dioxide capture: How catalyst-phthalocyanine is leading the way
释放节能二氧化碳捕集的新潜力:催化剂酞菁如何引领潮流
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:8.6
- 作者:
Siming Chen;Linlin Chen;Lei Zhang;Xiaoqiu Li - 通讯作者:
Xiaoqiu Li
TopicWave : Interactive Visual Analytics of Spatiotemporal Topics Distribution of People ‟ s Reactions to Events from Geotagged Social Media
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Siming Chen - 通讯作者:
Siming Chen
Siming Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
连续变量量子随机数整体安全性的实时高速评测
- 批准号:62175176
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
等离子体及铁磁材料中两类偏微分方程的研究
- 批准号:11871172
- 批准年份:2018
- 资助金额:53.0 万元
- 项目类别:面上项目
基于整体主义范式的量子人工智能-理论基础与方法研究
- 批准号:61876129
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
量子群、Groebner-Shirshov 基理论及相关问题研究
- 批准号:11361056
- 批准年份:2013
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
Zakharov型方程的若干问题研究
- 批准号:11201185
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
EAGER: Quantum Manufacturing: Monolithic integration of telecommunication-band quantum emitters in the 4H-SiC-on-insulator platform
EAGER:量子制造:电信频段量子发射器在绝缘体上 4H-SiC 平台中的单片集成
- 批准号:
2240420 - 财政年份:2023
- 资助金额:
$ 34.03万 - 项目类别:
Standard Grant
Creation of variable magnetic lattices of S=1 species made of organic biradicals and elucidation of quantum magnetic states
创建由有机双自由基组成的 S=1 种可变磁晶格并阐明量子磁态
- 批准号:
23H01127 - 财政年份:2023
- 资助金额:
$ 34.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Monolithic Quantum Processors in Production FDSOI and FinFET CMOS Technologies
生产中的单片量子处理器 FDSOI 和 FinFET CMOS 技术
- 批准号:
RTI-2023-00256 - 财政年份:2022
- 资助金额:
$ 34.03万 - 项目类别:
Research Tools and Instruments
Development of a numerical solver "correlation eraser" and application to strongly correlated electron systems
数值求解器“相关擦除器”的开发及其在强相关电子系统中的应用
- 批准号:
21K03440 - 财政年份:2021
- 资助金额:
$ 34.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EAGER: Toward Monolithic Optically-Pumped Single-Photon Sources Based on Deterministic InGaN Quantum Dots in GaN Nanowires
EAGER:基于 GaN 纳米线中确定性 InGaN 量子点的单片光泵浦单光子源
- 批准号:
2020015 - 财政年份:2020
- 资助金额:
$ 34.03万 - 项目类别:
Standard Grant