EAGER: Quantum Manufacturing: Monolithic integration of telecommunication-band quantum emitters in the 4H-SiC-on-insulator platform

EAGER:量子制造:电信频段量子发射器在绝缘体上 4H-SiC 平台中的单片集成

基本信息

  • 批准号:
    2240420
  • 负责人:
  • 金额:
    $ 27.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Optically addressable spin defects available in solid-state materials are promising for scalable quantum information processing owing to their long coherence time for information manipulation and storage. In addition, individual color centers distributed in a quantum network can be entangled through photon facilitated interaction, which enjoys low-loss propagation in the existing fiber infrastructure. As such, defect states such as nitrogen-vacancy (NV) centers in diamond received a lot of attention in the past two decades. Despite the efforts, the state of the art of NV centers has only achieved successful entanglement of a few quantum nodes, suggesting much work to be done for any practical applications. Recently, silicon carbide (SiC) emerged as another promising quantum material, as it hosts a variety of color centers in its polytypes including 3C, 4H and 6H. Compared to NV centers in diamond, intrinsic defects in SiC exhibit similar spin properties while possessing unique integration and scaling advantages given that SiC is a CMOS-compatible material with favorable electrical and optical properties. The objective of this quantum manufacturing program is focused on the development of vanadium-based color centers in SiC that can be utilized as high-quality single-photon emitters in the telecommunication band. Specifically, single vanadium defect will be deterministically introduced through optimized ion implantation and combined with various integrated photonic technologies in a low-loss 4H-SiC-on-insulator platform. Such monolithic integration of color centers with enabling chip-scale quantum technologies has the potential to transform quantum information processing in terms of reducing the device’s SWaP (size, weight, and power) and increasing available functionalities on the chip level. This eventually will lead to a powerful solid-state quantum processor that plays an indispensable role in the scalable implementation of future quantum networks. Moreover, the proposed research activities are expected to produce excellent learning materials for the education of next-generation quantum engineers, and the research findings will be integrated into relevant courses and outreach programs.The success of the project hinges on the development of methods and technologies that enable controllable introduction of vanadium defects to a low-loss 4H-SiC-on-insulator platform as a high-quality, telecom-band single photon emitter. For example, combining a single defect with a high-quality-factor microresonator and achieving strong mutual coupling is a proven technology to significantly reduce the defect’s optical lifetime and enhance its emission rate (Purcell effect). In addition, low-loss integrated photonic technologies such as waveguides and microresonators make on-chip optical excitation and spectral filtering feasible, which leads to a compact system solution compared to approaches based on free-space optics. We will also explore the electrical tuning of the vanadium defect (Stark effect) and apply the Pockels effect to the SiC microresonator for frequency tuning and efficient electro-optic modulation. If successful, we will develop a compact single-photon emitter that works in the telecommunication band with GHz-level emission rate, which can be readily interfaced with the classical information by employing a compact electro-optic modulator in 4H-SiC. Such a high-performance quantum source is expected to play a critical role in the next-generation quantum communication.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
固体材料中的光学可寻址自旋缺陷由于其在信息操作和存储方面的长相干时间而有望用于可扩展的量子信息处理。此外,分布在量子网络中的单个色心可以通过光子促进相互作用纠缠,在现有光纤基础设施中具有低损耗传播。因此,金刚石中的氮空位(NV)中心等缺陷态在过去二十年受到了广泛的关注。尽管付出了努力,NV中心目前的技术水平只成功地实现了几个量子节点的纠缠,这表明在实际应用中还有很多工作要做。近年来,碳化硅(SiC)作为另一种有前景的量子材料出现,因为它在3C、4H和6H多型中具有多种色心。SiC是一种与cmos兼容的材料,具有良好的电学和光学性能,与金刚石中的NV中心相比,SiC中的本征缺陷具有相似的自旋特性,同时具有独特的集成和缩放优势。该量子制造计划的目标是专注于在SiC中开发基于钒的色心,可用于电信频段的高质量单光子发射器。具体而言,将通过优化离子注入并结合各种集成光子技术,在低损耗4h - sic -on-绝缘体平台上确定性地引入单个钒缺陷。这种颜色中心的单片集成与芯片级量子技术有可能在降低器件的SWaP(尺寸、重量和功耗)和增加芯片级可用功能方面改变量子信息处理。这最终将导致强大的固态量子处理器,在未来量子网络的可扩展实现中发挥不可或缺的作用。此外,拟议的研究活动有望为下一代量子工程师的教育提供优秀的学习材料,研究成果将被整合到相关课程和推广计划中。该项目的成功取决于方法和技术的发展,这些方法和技术能够将钒缺陷可控地引入低损耗的绝缘体上的4h - sic平台,作为高质量的电信波段单光子发射器。例如,将单个缺陷与高质量因数微谐振器结合并实现强互耦合是一种经过验证的技术,可以显着降低缺陷的光学寿命并提高其发射率(Purcell效应)。此外,低损耗集成光子技术,如波导和微谐振器,使片上光激发和光谱滤波成为可能,与基于自由空间光学的方法相比,这导致了一个紧凑的系统解决方案。我们还将探索钒缺陷的电调谐(Stark效应),并将Pockels效应应用于SiC微谐振器进行频率调谐和高效电光调制。如果成功,我们将开发出一种紧凑的单光子发射器,它可以工作在电信频段,具有ghz级的发射速率,它可以很容易地通过使用紧凑的电光调制器在4H-SiC中与经典信息接口。这种高性能量子源有望在下一代量子通信中发挥关键作用。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qing Li其他文献

Interpretation-Empowered Neural Cleanse for Backdoor Attacks
针对后门攻击的解释授权神经净化
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liang;Zeyu Dai;Jingran Su;Chao Pan;Luning Wang;Wenqi Fan;Qing Li
  • 通讯作者:
    Qing Li
Assessment of Industrial Internet Platform Application in Manufacturing Enterprises: System Construction and Industrial Practice
制造企业工业互联网平台应用评估:体系建设与行业实践
  • DOI:
    10.1109/access.2021.3098940
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Jun Li;Yong Zhou;Xu Zhang;Shuai Liu;Qing Li
  • 通讯作者:
    Qing Li
The effect of a telephone follow-up intervention on illness perception and lifestyle after myocardial infarction in China: a randomized controlled trial.
电话随访干预对中国心肌梗死后疾病认知和生活方式的影响:一项随机对照试验。
Coal elemental (compositional) data analysis with hierarchical clustering algorithms
使用层次聚类算法进行煤元素(成分)数据分析
  • DOI:
    10.1016/j.coal.2021.103892
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Na Xu;Chuanpeng Xu;Robert B. Finkelman;Mark A. Engle;Qing Li;Mengmeng Peng;Lizhi He;Bin Huang;Yuchen Yang
  • 通讯作者:
    Yuchen Yang
An efficient synthesis of 1,3-diarylbenzo[f]quinolines from 2-halogenated acetophenone, aromatic aldehyde, and naphthalen-2-amine catalyzed by iodine
碘催化2-卤代苯乙酮、芳香醛和2-萘胺高效合成1,3-二芳基苯并[f]喹啉

Qing Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qing Li', 18)}}的其他基金

CADMap: Creating Mapped Solid Models of Deformed As-Manufactured Geometries that Link to an Original Reference Design
CADMap:创建链接到原始参考设计的变形制造几何图形的映射实体模型
  • 批准号:
    2332264
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Photonic Chip-Scale Time Crystals
合作研究:光子芯片级时间晶体
  • 批准号:
    2131162
  • 财政年份:
    2022
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Double-layered wide-bandgap photonic materials for efficient nonlinear applications without periodic poling
用于高效非线性应用的双层宽带隙光子​​材料,无需周期性极化
  • 批准号:
    2127499
  • 财政年份:
    2021
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

EAGER: Quantum Manufacturing: Supporting Future Quantum Applications by Developing a Robust, Scalable Process to Create Diamond Nitrogen-Vacancy Center Qubits
EAGER:量子制造:通过开发稳健、可扩展的工艺来创建钻石氮空位中心量子位,支持未来的量子应用
  • 批准号:
    2242049
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing: Scaling Quantum Photonic Circuits with Integrated Superconducting Detectors by 100×
EAGER:量子制造:使用集成超导探测器将量子光子电路扩展 100 倍
  • 批准号:
    2240501
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Quantum Manufacturing: Vertical Coupling and Cross-Talk Shielding of Superconducting Quantum Devices
合作研究:EAGER:量子制造:超导量子器件的垂直耦合和串扰屏蔽
  • 批准号:
    2240246
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing: Scalable Manufacturing of Molecular Qubit Arrays Using Self-assembled DNA
EAGER:量子制造:使用自组装 DNA 进行分子量子位阵列的可扩展制造
  • 批准号:
    2240309
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Quantum Manufacturing: Vertical Coupling and Cross-Talk Shielding of Superconducting Quantum Devices
合作研究:EAGER:量子制造:超导量子器件的垂直耦合和串扰屏蔽
  • 批准号:
    2240245
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing: Atomic-layer Etching Manufacturing Processes for High Performance Superconducting Quantum Devices
EAGER:量子制造:高性能超导量子器件的原子层蚀刻制造工艺
  • 批准号:
    2234390
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing: Manufacturing Integrated Quantum Sensing and Quantum Photonic Technologies Through Direct Bonding of Diamond Membranes
EAGER:量子制造:通过直接粘合金刚石膜制造集成量子传感和量子光子技术
  • 批准号:
    2240399
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing: Three-Dimensional Printing of Meta-Photonic Elements for Chip-based Quantum Devices
EAGER:量子制造:基于芯片的量子器件的元光子元件的三维打印
  • 批准号:
    2240414
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing "Scalable integration of ion-photon quantum information converters (IP-QIC) on fiber for networking and computing applications"
EAGER:量子制造“离子光子量子信息转换器(IP-QIC)在光纤上的可扩展集成,用于网络和计算应用”
  • 批准号:
    2240227
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing: 3D Microfabricated Ion Traps
EAGER:量子制造:3D 微制造离子阱
  • 批准号:
    2240291
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了